Skip to main content
Log in

A New Cobalt(III)/[Mo6O19]2− Heterogeneous Catalyst for Promoting the Oxidative Coupling of Amines to Imines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Currently, the efficient preparation of imines is still a great challenge under mild conditions. In this article, by incorporating 2-acetylpyridine thiosemicarbazone (HL), Co(NO3)2·6H2O and Na2MoO4·2H2O, a new compound [Co(L)2]2[Mo6O19] (1) was prepared and characterized by elemental analysis (EA), infrared (IR) spectra, ultraviolet–visible (UV–Vis) spectra, powder X-ray diffractometry (PXRD) spectra, X-ray photoelectron spectroscopy (XPS) and X-ray single-crystal diffraction. 1 could be used as a heterogeneous catalyst for oxidative coupling of amines in a comparatively mild condition. Furthermore, 1 exhibited remarkable catalytic performance for oxidation coupling of amines to imines with high yield in the presence of tert-butyl hydroperoxide (TBHP) (up to 92%). Kinetic measurements of the oxidation of benzylamine suggest that the rate law is r = k′[BnNH2][TBHP] (k′ = k[cat] = 0.2338 L mol−1 h−1). Additionally, 1 can be recycled at least three times without a distinct loss of activity.

Graphic Abstract

A new compound [Co(L)2]2[Mo6O19] (1) (HL = 2-acetylpyridine thiosemicarbazone) has been synthesized and characterized. Furthermore, 1 can efficiently catalyze the oxidative coupling of amines to imines with high activity and exhibited good recyclability and high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ge DH, Qu GL, Li XM et al (2016) Novel transition bimetal-organic frameworks: recyclable catalyst for the oxidative coupling of primary amines to imines at mild conditions. New J Chem 40:5531–5536

    Article  CAS  Google Scholar 

  2. Patil RD, Adimurthy S (2013) Catalytic methods for imine synthesis. Asian J Org Chem 2:726–744

    Article  CAS  Google Scholar 

  3. Jawale DV, Gravel E, Villemin E et al (2014) Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube-gold nanohybrid. Chem Commun 50:15251–15254

    Article  CAS  Google Scholar 

  4. Yamada K, Tomioka K (2008) Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem Rev 108:2874–2886

    Article  CAS  Google Scholar 

  5. Wang J, Liu XH, Feng XM (2011) Asymmetric strecker reactions. Chem Rev 111:6947–6983

    Article  CAS  Google Scholar 

  6. Kobayashi S, Mori Y, Fossey JS et al (2011) Catalytic enantioselective formation of C–C bonds by addition to imines and hydrazones: a ten-year update. Chem Rev 111:2626–2704

    Article  CAS  Google Scholar 

  7. Kondo M, Kobayashi N, Hatanaka T et al (2015) Catalytic enantioselective reaction of α-phenylthioacetonitriles with imines using chiral bis(imidazoline)-palladium catalysts. Chem Eur J 21:9066–9070

    Article  CAS  Google Scholar 

  8. He LP, Chen T, Gong D et al (2012) Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: direct coupling of two amines to form an imine without oxidant. Organometallics 31:5208–5211

    Article  CAS  Google Scholar 

  9. Jin XK, Liu YX, Lu QQ et al (2013) Formation of C=N bonds by the release of H2: a new strategy for synthesis of imines and benzazoles. Biomol Chem 11:3776–3780

    Article  CAS  Google Scholar 

  10. Furukawa S, Suga A, Komatsu T (2014) Highly efficient aerobic oxidation of various amines using Pd3Pb intermetallic compounds as catalysts. Chem Commun 50:3277–3280

    Article  CAS  Google Scholar 

  11. Neeli CKP, Ganji S, Ganjala VSP et al (2014) Oxidative coupling of primary amines to imines under base-free and additive-free conditions over AuNPs/SBA-NH2 nanocatalyst. RSC Adv 4:14128–14135

    Article  CAS  Google Scholar 

  12. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Aerobic oxidation of benzyl amines to benzyl imines catalyzed by metal-organic framework solids. ChemCatChem 2:1438–1443

    Article  CAS  Google Scholar 

  13. Zhang CH, Zhao PS, Zhang ZL et al (2017) Co–N–C supported on SiO2: a facile, efficient catalyst for aerobic oxidation of amines to imines. RSC Adv 7:47366–47372

    Article  CAS  Google Scholar 

  14. Ye JL, Ni K, Liu J et al (2018) Oxygen-rich carbon quantum dots as catalysts for selective oxidation of amines and alcohols. ChemCatChem 10:259–265

    Article  CAS  Google Scholar 

  15. Wang SS, Yang GY (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962

    Article  CAS  Google Scholar 

  16. Liu D, Lu Y, Tan HQ et al (2013) Polyoxometalate-based purely inorganic porous frameworks with selective adsorption and oxidative catalysis functionalities. Chem Commun 49:3673–3675

    Article  CAS  Google Scholar 

  17. Yu XD, Xu LL, Yang X et al (2008) Preparation of periodic mesoporous silica-included divacant Keggin units for the catalytic oxidation of styrene to synthesize styrene oxide. Appl Surf Sci 254:4444–4451

    Article  CAS  Google Scholar 

  18. Liu YY, Murata K, Inaba M et al (2004) Catalytic oxidation of cyclohexene by molecular oxygen over isopolyoxometalates. Chem Lett 33:200–201

    Article  Google Scholar 

  19. Mohs TR, Du YH, Plashko B et al (1997) Homogeneous modeling of ammoxidation chemistry: nitrile formation using a soluble analogue of MoO3. Chem Commun 18:1707–1708

    Article  Google Scholar 

  20. Morales S, Guijarro FG, Ruano JLG et al (2014) A general aminocatalytic method for the synthesis of aldimines. J Am Chem Soc 136:1082–1089

    Article  CAS  Google Scholar 

  21. Han QX, He C, Zhao M et al (2013) Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J Am Chem Soc 135:10186–10189

    Article  CAS  Google Scholar 

  22. Han QX, Qi B, Ren WM et al (2015) Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nat Commun 6:10007

    Article  Google Scholar 

  23. Liu L, Shi W, Chen XY et al (2006) Synthesis and crystal structure of a series of transition metal complexes with sulfur-containing ligands. Synth React Inorg Met Org Chem 36:549–554

    Article  CAS  Google Scholar 

  24. Dolomanov OV, Bourhis LJ, Gildea RJ et al (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  25. Sheldrick GM (2015) SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  26. Ferraz KSO, Da Silva JG, Costa FM et al (2013) N(4)-tolyl-2-acetylpyridine thiosemicarbazones and their platinum(II, IV) and gold(III) complexes: cytotoxicity against human glioma cells and studies on the mode of action. Biometals 26:677–691

    Article  CAS  Google Scholar 

  27. Wang YT, Fang Y, Zhao M et al (2017) Cu(II), Ga(III) and In(III) complexes of 2-acetylpyridine N(4)-phenylthiosemicarbazone: synthesis, spectral characterization and biological activities. Med Chem Commun 8:2125–2132

    Article  CAS  Google Scholar 

  28. Oliveira AA, Perdigão GMC, Rodrigues LE et al (2017) Cytotoxic and antimicrobial effects of indium(III) complexes with 2-acetylpyridine-derived thiosemicarbazones. Dalton Trans 46:918–932

    Article  CAS  Google Scholar 

  29. Gatard S, Blanchard S, Schollhorn B et al (2010) Electroactive benzothiazole hydrazones and their [Mo6O19]2− derivatives: promising building blocks for conducting molecular materials. Chem Eur J 16:8390–8399

    Article  CAS  Google Scholar 

  30. Fang Y, Wang YT, Zhao M et al (2018) Bismuth(III) and diorganotin(IV) complexes of bis(2-acetylpyridine) thiocarbonohydrazone: synthesis, characterization, and apoptosis mechanism of action in vitro. Polyhedron 155:254–260

    Article  CAS  Google Scholar 

  31. Niu JY, Ma JC, Zhao JW et al (2011) A new 2D network polyoxometalate constructed from strandberg-type phosphomolybdates linked through binuclear Ca(II) clusters. Inorg Chem Commun 14:474–477

    Article  CAS  Google Scholar 

  32. Tai YX, Ji YM, Lu YL et al (2016) Cadmium(II) and indium(III) complexes derived from 2-benzoylpyridine N(4)-cyclohexylthiosemicarbazone: synthesis, crystal structures, spectroscopic characterization and cytotoxicity. Synth Met 219:109–114

    Article  CAS  Google Scholar 

  33. Chen YD, Zhang CL, Yang CP et al (2017) A Waugh type [CoMo9O32]6− cluster with atomically dispersed CoIV originates from Anderson type [CoMo6O24]3− for photocatalytic oxygen molecule activation. Nanoscale 9:15332–15339

    Article  CAS  Google Scholar 

  34. Zhang Y, Shao Q, Long S et al (2018) Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy 45:448–455

    Article  CAS  Google Scholar 

  35. Zhong WZ, Liu MQ, Dai J et al (2018) Synergistic hollow CoMo oxide dual catalysis for tandem oxygen transfer: preferred aerobic epoxidation of cyclohexene to 1,2-epoxycyclohexane. Appl Catal B 225:180–196

    Article  CAS  Google Scholar 

  36. Mukherjee A, Nerush A, Leitus G et al (2016) Manganese-catalyzed environmentally benign dehydrogenative coupling of alcohols and amines to form aldimines and H2: a catalytic and mechanistic study. J Am Chem Soc 138:4298–4301

    Article  CAS  Google Scholar 

  37. Sun WL, He C, Liu T et al (2019) Synergistic catalysis for light-driven proton reduction using a polyoxometalate-based Cu–Ni heterometallic–organic framework. Chem Commun 55:3805–3808

    Article  CAS  Google Scholar 

  38. Huang SQ, Xu YG, Zhou T et al (2018) Constructing magnetic catalysts with in situ solid-liquid interfacial photo-fenton-like reaction over Ag3PO4@NiFe2O4 composites. Appl Catal B 225:40–50

    Article  Google Scholar 

  39. Sirgamalla R, Kommakula A, Banoth S et al (2018) Synthesis of amides from aliphatic acids and amines by using of I2/TBHP at room temperature. ChemistrySelect 3:1062–1065

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (21671055, 21601048), the Natural Science Foundation Project of Henan province (162300410012), and Open Research Fund of Henan Key Laboratory of Polyoxometalate Chemistry (HNPOMKF1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuxia Han or Mingxue Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Li, J., Xing, C. et al. A New Cobalt(III)/[Mo6O19]2− Heterogeneous Catalyst for Promoting the Oxidative Coupling of Amines to Imines. Catal Lett 150, 753–761 (2020). https://doi.org/10.1007/s10562-019-02965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02965-7

Keywords

Navigation