Skip to main content
Log in

Synthesis of High Efficient and Stable Au@ZIF-8 with Difference Particle Size for Chemselective Hydrogenation of Nitro Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of highly porous metal organic framework ZIF-8 supported Au nanoparticles materials with different Au particle size were prepared through one-pot method at room temperature. The obtained heterogeneous catalysts were comprehensively characterized by powder X-ray diffraction, N2 adsorption, FTIR spectroscopy, scanning electron microscope and transmission electron microscopy. The intact crystallinity of ZIF-8 was found before and after the Au loading, and Au nanoparticles with different particle size were found homogeneously dispersed in ZIF-8. The obtained Au catalysts exhibited high activity and stability for hydrogenation of 4-nitrophenol, with excellent selectivity to aminophenol. It had been shown that the Au particle size played important roles in the activity. The as-prepared catalysts exhibit relatively excellent activity and selectivity in the reduction of p-nitrobenzonitrile to p-aminobenzonitrile, which is benefit from the high selectivity of Au particles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V (2015) Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem Soc Rev 44:228–249

    Article  CAS  Google Scholar 

  2. Yin DD, Li C, Ren HX, Shekhah O, Liu JX, Liang CH (2017) Efficient Pd@MIL-101 (Cr) hetero-catalysts for 2-butyne-1, 4-diol hydrogenation exhibiting high selectivity. RSC Adv 7:1626–1633

    Article  CAS  Google Scholar 

  3. Ren HX, Li C, Yin DD, Liu JX, Liang CH (2016) Pd@MIL-101 as an efficient bifunctional catalyst for hydrodeoxygenation of anisole. RSC Adv 6:85659–85665

    Article  CAS  Google Scholar 

  4. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Article  CAS  Google Scholar 

  5. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  6. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230445

    Article  Google Scholar 

  7. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  8. Chen LJ, Yan JQ, Tong ZX, Yu SY, Tang JT, Ou BL, Yue LJ, Tian L (2018) Nanofiber-like mesoporous alumina supported palladium nanoparticles as a highly active catalyst for base-free oxidation of benzyl alcohol. Microporous Mesoporous Mater 266:126–131

    Article  CAS  Google Scholar 

  9. Dhakshinamoorthy A, Garcia H (2012) Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem Soc Rev 41:5262–5284

    Article  CAS  Google Scholar 

  10. Isaeva VI, Eliseev OL, Chernyshev VV, Bondarenko TN, Vergun VV, Kustov LM (2019) Palladium nanoparticles embedded in MOF matrices: catalytic activity and structural stability in iodobenzene methoxycarbonylation. Polyhedron 158:55–64

    Article  CAS  Google Scholar 

  11. Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48:7502–7513

    Article  CAS  Google Scholar 

  12. Aijaz A, Akita T, Tsumori N, Xu Q (2013) Metal-Organic Framework-Immobilized Polyhedral Metal Nanocrystals: reduction at Solid-Gas Interface, Metal Segregation, Core-Shell Structure, and High Catalytic Activity. J Am Chem Soc 135:16356–16359

    Article  CAS  Google Scholar 

  13. Zhang MM, Yang YB, Li C, Liu Q, Williams CT, Liang CH (2014) PVP-Pd@ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1, 4-butynediol. Catal Sci Technol 4:329–332

    Article  CAS  Google Scholar 

  14. Haruta M, Yamada N, Kobayashi T, Lijima S (1988) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    Article  Google Scholar 

  15. Qi C, Huang J, Bao S, Su H, Akita T, Haruta M (2011) Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2. J Catal 281:12–20

    Article  CAS  Google Scholar 

  16. Takei T, Akita T, Nakamura I, Fujitani T, Okumura M, Okazaki K, Huang J, Ishida T, Haruta M (2012) Heterogeneous catalysis by gold. Adv Catal 55:1–124

    CAS  Google Scholar 

  17. Rudolph M, Hashmi ASK (2012) Gold catalysis in total synthesis-an update. Chem Soc Rev 41:2448–2462

    Article  CAS  Google Scholar 

  18. Chen X, Zhu HY, Zhao JC, Zheng ZF, Gao XP (2008) Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem Int Ed 47:5353–5356

    Article  CAS  Google Scholar 

  19. Liu LL, Zhou XJ, Yan YM, Zhou J, Zhang WP, Tai XS (2018) Bimetallic gold-silver nanoparticles supported on zeolitic imidazolate framework-8 as highly active heterogenous catalysts for selective oxidation of benzyl alcohol into benzaldehyde. Polymer 10:1089–1094

    Article  Google Scholar 

  20. Wang H, Fan WB, He Y, Wang JG, Kondo JN, Tatsumi T (2013) Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts. J Catal 299:10–19

    Article  CAS  Google Scholar 

  21. Liu LL, Tai XS, Zhou XJ, Hou JX, Zhang ZH (2019) Bimetallic Au–Ni alloy nanoparticles in a metal–organic framework (MIL-101) as efficient heterogeneous catalysts for selective oxidation of benzyl alcohol into benzaldehyde. J Alloys Compd 790:326–336

    Article  CAS  Google Scholar 

  22. Corma A, Gonzalez-Arellano C, Sanchez MIF (2009) Gold complexes as catalysts: chemoselective hydrogenation of nitroarenes. Appl Catal A 356:99–102

    Article  CAS  Google Scholar 

  23. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  24. Wang XD, Hao YF, Keane MA (2016) Selective gas phase hydrogenation of p-nitrobenzonitrile to p-aminobenzonitrile over zirconia supported gold. Appl Catal A 510:171–179

    Article  CAS  Google Scholar 

  25. Sun LB, Sun X, Zheng YH, Lin QQ, Su HJ, Qi CX (2017) Fabrication and characterization of core-shell polystyrene/polyaniline/Au composites and their catalytic properties for the reduction of 4-nitrophenol. Synth Met 224:1–6

    Article  CAS  Google Scholar 

  26. Yin DD, Li C, Ren HX, Liu JX, Liang CH (2018) Gold-palladium-alloy-catalyst loaded UiO-66-NH2 for reductive amination with nitroarenes exhibiting high selectivity. ChemistrySelect 3:5092–5097

    Article  CAS  Google Scholar 

  27. Zhang MM, GaoY Li C, Liang CH (2015) Chemical vapor deposition of Pd (C3H5)(C5H5) for the synthesis of reusable Pd@ZIF-8 catalysts for the Suzuki coupling reaction. Chin J Catal 36:588–594

    Article  CAS  Google Scholar 

  28. Ishida T, Ogihara Y, Ohashi H, Akita T, Honma T, Oji H, Haruta M (2012) Base-free direct oxidation of 1-octanol to octanoic acid and its octyl Ester over supported gold catalysts. Chemsuschem 5:2243–2248

    Article  CAS  Google Scholar 

  29. Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291:222–229

    Article  CAS  Google Scholar 

  30. Zanella R, Louis C, Giorgio S, Touroude R (2004) Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism. J Catal 223:328–339

    Article  CAS  Google Scholar 

  31. Cárdenas-Lizana F, Gómez-Quero S, Idriss H, Keane MA (2009) Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2. J Catal 268:223–234

    Article  Google Scholar 

  32. Chen JC, Zhang RY, Han L, Tu B, Zhao DY (2013) One-pot synthesis of thermally stable gold@ mesoporous silica core-shell nanospheres with catalytic activity. Nano Res 6:871–879

    Article  CAS  Google Scholar 

  33. Lee J, Park JC, Song HA (2008) Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p-Nitrophenol. Adv Mater 20:1523–1528

    Article  CAS  Google Scholar 

  34. Koprivova K, Cerveny L (2008) Hydrogenation of nitrobenzonitriles using Raney nickel catalyst. Res Chem Intermed 34:93–101

    Article  CAS  Google Scholar 

  35. Wang X, Perret N, Keane MA (2012) The role of hydrogen partial pressure in the gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au and Pd: a consideration of reaction. Chem Eng J 210:103–113

    Article  CAS  Google Scholar 

  36. Wang X, Perret N, Keane MA (2013) Gas phase hydrogenation of nitrocyclohexane over supported gold catalysts. Appl Catal A 467:575–584

    Article  CAS  Google Scholar 

  37. Wang X, Perret N, Delgado JJ, Blanco G, Chen X, Olmos CM, Bernal S, Keane MA (2013) Reducible support effects in the gas phase hydrogenation of p-Chloronitrobenzene over gold. J Phys Chem C 117:994–1005

    Article  CAS  Google Scholar 

  38. Chan CWA, Xie Y, Cailuo N, Yu KMK, Cookson J, Bishop P, Tsang SC (2011) New environmentally friendly catalysts containing Pd–interstitial carbon made from Pd–glucose precursors for ultraselective hydrogenations in the liquid phase. Chem Commun 47:7971–7973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (21802118) and Shandong Provincial Natural Science Foundation, China (ZR2018BB041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Qi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, Q., Sun, L. et al. Synthesis of High Efficient and Stable Au@ZIF-8 with Difference Particle Size for Chemselective Hydrogenation of Nitro Compounds. Catal Lett 150, 438–449 (2020). https://doi.org/10.1007/s10562-019-02963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02963-9

Keywords

Navigation