Advertisement

A Facile Synthesis of Pd–C3N4@Titanate Nanotube Catalyst: Highly Efficient in Mizoroki–Heck, Suzuki–Miyaura C–C Couplings

  • Venkata Ramana Kumar Velpula
  • Thirupathaiah Ketike
  • Gidyonu Paleti
  • Seetha Rama Rao Kamaraju
  • David Raju BurriEmail author
Article
  • 35 Downloads

Abstract

A Pd–C3N4@titanate nanotube (Pd–C3N4@TNT) catalyst workable in water medium, robust against leaching and agglomeration was prepared in a facile synthetic procedure using quite common chemicals such as TiO2 powder, urea and palladium acetate. The Pd–C3N4@TNT catalyst has been characterized by BET surface area and pore size distribution, X-ray diffraction, solid-state 13C NMR spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The Pd–C3N4@TNT is a green catalyst for the Miziroki–Heck and Suzuki–Miyaura C–C coupling reactions in water medium with high efficiency (˃ 99% product yields) due to atomic level immobilization of Pd in C3N4 networked titanate nanotubes. Pd–C3N4@TNT is robust against leaching and agglomeration due to stable and furthermore it is recyclable and usable at least for five repeated cycles. The use of water as solvent, absence of leaching and agglomeration, recyclability and reusability ascertains the greenness of Pd–C3N4@TNT) catalyst and process.

Graphic Abstract

Novel Pd–C3N4@titanate nanotube catalyst prepared from bulk TiO2 and urea by simple hydrothermal and thermal pyrolysis followed by immobilization of Pd is active and selective for Mizoroki–Heck, Suzuki–Miyaura C–C couplings in water medium.

Keywords

Titanate nanotube C–C coupling Pd C3N4 

Abbreviations

TNT

Titanate nanotubes

H-TNT

Hydrogenated titanate nanotubes

GVL

Gamma-Valerolactone

DCM

Dichloromethane

GC

Gas chromatography

GC-MS

Chromatography–mass spectrometry

Notes

Acknowledgements

The author VVRK thanks Council of Scientific Industrial Research (CSIR), New Delhi, India for award of Fellowship. Manuscript Communication Number: IICT/Pubs./2019/215.

Supplementary material

10562_2019_2955_MOESM1_ESM.docx (550 kb)
Supplementary material 1 (DOCX 549 kb)

References

  1. 1.
    Lewis LN (1993) Chem Rev 93:2693–2730CrossRefGoogle Scholar
  2. 2.
    Roucoux A, Schulz J, Patin H (2002) Catalysts Chem Rev 102:3757–3778CrossRefGoogle Scholar
  3. 3.
    Turner V, Golovko B, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (2008) Nature 454:981–983CrossRefGoogle Scholar
  4. 4.
    Bennur TH, Ramani A, Bal R, Chanda BM, Sivasanker S (2002) Catal Commun 3:493–496CrossRefGoogle Scholar
  5. 5.
    Zhao F, Bhanage BM, Shirai M, Arai M (2000) Chem Eur J 6:843–848CrossRefGoogle Scholar
  6. 6.
    Zhao F, Murakami K, Shirai M, Arai M (2000) J Catal 194:479–483CrossRefGoogle Scholar
  7. 7.
    Köhler K, Heidenreich RG, Krauter JGE, Pietsch J (2002) Chem Eur J 3:622–631CrossRefGoogle Scholar
  8. 8.
    Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPFRJ, van Haaren AMJ, van der Eerden PWN, van Leeuwen M, Koningsberger DC (2003) Chem Commun 128–129Google Scholar
  9. 9.
    Iwasawa T, Tokunaga M, Obora Y, Tsuji Y (2004) J Am Chem Soc 126:6554–6555CrossRefGoogle Scholar
  10. 10.
    Crevoisier M, Barle EL, Flueckiger A, Dolan DG, Ovais M, Walsh A (2016) Pharm Dev Technol 1:52–56Google Scholar
  11. 11.
    Veisi H, Mirzaee N (2018) Appl Organomet Chem 32:e4067CrossRefGoogle Scholar
  12. 12.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335CrossRefGoogle Scholar
  13. 13.
    Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2008) Nat Mater 8:126–131CrossRefGoogle Scholar
  14. 14.
    Molnar A (2011) Chem Rev 111:2251–2320CrossRefGoogle Scholar
  15. 15.
    Wang GH, Hilgert J, Richter FH, Wang F, Bongard HJ, Spliethoff B, Weidenthaler C, Schuth F (2014) Nat Mater 13:293–300CrossRefGoogle Scholar
  16. 16.
    Sadjadi S, Heravi MM, Malmir M (2018) Carbohydr Polym 186:25–34CrossRefGoogle Scholar
  17. 17.
    Martínez-Klimov ME, Hernandez-Hipólito P, Klimova TE, Solís-Casados DA, Martínez-García M (2016) J Catal 342:138–150CrossRefGoogle Scholar
  18. 18.
    Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Adv Mater 19:33–60CrossRefGoogle Scholar
  19. 19.
    Fei X, Kong W, Chen X, Jiang X, Shao Z, Lee JY (2017) ACS Catal 7:2412–2418CrossRefGoogle Scholar
  20. 20.
    Puthiaraj P, Pitchumani K (2014) Green Chem 16:4223–4233CrossRefGoogle Scholar
  21. 21.
    Mitoraj D, Kisch H (2008) Angew Chem Int Ed 47:9975–9978CrossRefGoogle Scholar
  22. 22.
    Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) J Mater Chem 21:14398CrossRefGoogle Scholar
  23. 23.
    Mitoraj D, Kisch H (2010) Chem Eur J 16:261–269CrossRefGoogle Scholar
  24. 24.
    Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L (2015) Green Chem 17:365–372CrossRefGoogle Scholar
  25. 25.
    Niu L, Shao M, Wang S, Lu L, Gao H, Wang J (2008) J Mater Sci 43:1510–1514CrossRefGoogle Scholar
  26. 26.
    Holst JR, Gillan EG (2008) J Am Chem Soc 13:7373–7379CrossRefGoogle Scholar
  27. 27.
    Kailasam K, Epping JD, Thomas A, Losse S, Junge H (2011) Energy Environ Sci 4:4668–4674CrossRefGoogle Scholar
  28. 28.
    Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X (2012) Nat Commun 3:1139CrossRefGoogle Scholar
  29. 29.
    Makowski SJ, Kostler P, Schnick W (2012) Chem Eur J 18:3248–3257CrossRefGoogle Scholar
  30. 30.
    Gao H, Yan S, Wang J, Zou Z (2014) Dalton Trans 43:8178CrossRefGoogle Scholar
  31. 31.
    Homas TA, Fischer A, Goettmann F, Antonietti MJ, Muller O, Schloglb R, Carlssonc JM (2008) J Mater Chem 18:4893CrossRefGoogle Scholar
  32. 32.
    Cui YJ, Ding Z, Fu X, Wang XC (2012) Angew Chem 124:11984CrossRefGoogle Scholar
  33. 33.
    Zhu B, Xia P, Ho W, Yu J (2015) Appl Surf Sci 344:188–195CrossRefGoogle Scholar
  34. 34.
    de Vries JG (2006) Dalton Trans 421Google Scholar
  35. 35.
    Köhler K, Heidenreich RG, Krauter JGE, Pietsch J (2002) Chem Eur J 8:622CrossRefGoogle Scholar
  36. 36.
    Choghamarani AG, Derakhshan AA, Hajjami M, Rajabi L (2017) Catal Lett 147:110–127CrossRefGoogle Scholar
  37. 37.
    Arsalani N, Akbari A, Amini M, Jabbari E, Gautam S, Chae KH (2017) Catal Lett 147:1086–1094CrossRefGoogle Scholar
  38. 38.
    Razavi N, Akhlaghinia B, Jahanshahi R (2017) Catal Lett 147:360CrossRefGoogle Scholar
  39. 39.
    Tahmasbi B, Ghorbani-Choghamarani A (2017) Catal Lett 147:649CrossRefGoogle Scholar
  40. 40.
    Zhao X, Zhang J, Zhao Y, Li X (2015) Catal Lett 145:2010–2019CrossRefGoogle Scholar
  41. 41.
    Tanhaei M, Mahjoub A, Nejat R (2018) Catal Lett 148:1549–1561CrossRefGoogle Scholar
  42. 42.
    Nuri A, Vucetic N, Smått JH, Mansoori Y, Mikkola JP, Murzin YD (2019) Catal Lett 149:1941–1951CrossRefGoogle Scholar
  43. 43.
    Zolfigol MA, Azadbakht T, Khakyzadeh V, Nejatyami R, Perrin D (2014) RSC Adv 4:40036CrossRefGoogle Scholar
  44. 44.
    Rostamnia S, Liu X, Zheng D (2014) J Colloid Interface Sci 86–91Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Venkata Ramana Kumar Velpula
    • 1
    • 2
  • Thirupathaiah Ketike
    • 1
  • Gidyonu Paleti
    • 1
    • 2
  • Seetha Rama Rao Kamaraju
    • 1
    • 2
  • David Raju Burri
    • 1
    • 2
    Email author
  1. 1.Catalysis & Fine Chemicals DepartmentCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.CSIR-Academy of Scientific and Innovative Research (CSIR-AcSIR)New DelhiIndia

Personalised recommendations