Skip to main content
Log in

Effect of Sodium Ions on Catalytic Performance of TS-1 in Gas-Phase Epoxidation of Propylene with Hydrogen Peroxide Vapor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Na+ ions in TS-1 influence the results of liquid-phase oxidations of hydrocarbons seriously, and the avoiding of Na+ ion impurity in TS-1 synthesis is crucial for its catalytic application. In this paper, however, the solvent-free gas-phase epoxidation of propylene with H2O2 vapor (G-HPPO) was investigated over TS-1 zeolites with different Na+ ion content. Significant improvement in the performance of G-HPPO process was observed with NaOH solution hydrothermally modified TS-1 which had a Na/Ti ratio of 0.68. The performance of G-HPPO process was further enhanced when the Na/Ti ratio of hydrothermally modified TS-1 was increased to 1.0 via subsequent Na+ ion impregnation. The catalyst showed 16.9% propylene conversion, 97.5% PO selectivity and 79.3% H2O2 utility at a propylene to H2O2 ratio of around 5. On the other hand, when the Na+ ion content of the hydrothermally modified TS-1 was reduced via subsequent NH4+-exchange, the resulted catalyst exhibited a remarkably deteriorated G-HPPO process performance. By Combining the characterizations of UV–Raman, UV–vis and FT-IR with DFT calculation, it is concluded that in the NaOH solution hydrothermally modified TS-1 the Na+ ions served as counter cations of the silicon hydroxyls adjacent to “open” tetra-coordinated framework Ti sites. As a result, the local environment of the “open” Ti sites (with titanium hydroxyls) was adjusted and the Ti sites were properly activated. Whereas, in the case of excess Na+ ions were introduced into the TS-1 (for example Na/Ti ratio more than 1.0), the titanium hydroxyl of the “open” Ti sites would be occupied, to which the deteriorated G-HPPO process performance was ascribed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447–3459

    Article  CAS  Google Scholar 

  2. Lin M, Xia CJ, Zhu B, Li H, Shu XT (2016) Chem Eng J 295:370–375

    Article  CAS  Google Scholar 

  3. Zhao JL, Zhou JC, Su J, Guo HC, Wang XS, Gong WM (2007) AIChE J 53:3204–3209

    Article  CAS  Google Scholar 

  4. Su J, Zhou JC, Liu CY, Wang XS, Guo HC (2010) Chin J Catal 31:1195–1199

    Article  CAS  Google Scholar 

  5. Klemm E, Dietzsch E, Schwarz T, Kruppa T, Oliveira ALD, Becker F, Markowz G, Schirrmeister S, Schutte R, Caspary KJ, Schuth F, Honicke D (2008) Ind Eng Chem Res 47:2086–2090

    Article  CAS  Google Scholar 

  6. Su J, Xiong G, Zhou J, Liu WH, Zhou DH, Wang GR, Wang XS, Guo HC (2012) J Catal 288:1–7

    Article  CAS  Google Scholar 

  7. Perez Ferrandez DM, de Croon MHJM, Schouten JC, Nijhuis TA (2013) Ind Eng Chem Res 52:10126–10132

    Article  CAS  Google Scholar 

  8. Perego C, Carati A, Ingallina P, Mantegazza MA, Bellussi G (2001) Appl Catal A 221:63–72

    Article  CAS  Google Scholar 

  9. Fan WB, Duan R-G, Yokoi T, Wu P, Kubota Y, Tatsumi T (2008) J Am Chem Soc 130:10150–10164

    Article  CAS  Google Scholar 

  10. Guo Q, Feng ZC, Li G, Fan FT, Li C (2013) J Phys Chem C 117:2844–2848

    Article  CAS  Google Scholar 

  11. Zuo Y, Liu M, Zhang T, Hong LW, Guo XW, Song WC, Chen YS, Zhu PY, Jaye C, Fischer D (2015) RSC Adv 5:17897–17904

    Article  CAS  Google Scholar 

  12. Signorile M, Crocellà V, Damin A, Rossi B, Lamberti C, Bonino F, Bordig S (2018) J Phys Chem C 122:9021–9034

    Article  CAS  Google Scholar 

  13. Clerici MG, Ingallina P (1993) J Catal 140:71–83

    Article  CAS  Google Scholar 

  14. Lamberti C, Bordig S, Arduino D, Zecchina A (1998) J Phys Chem B 102:6382–6390

    Article  CAS  Google Scholar 

  15. Wells DH Jr, Delgass WN, Thomson KT (2004) J Am Chem Soc 126:2956–2962

    Article  CAS  Google Scholar 

  16. Nie XW, Ji XJ, Chen YG, Guo XW, Song CS (2017) Mol Catal 441:150–167

    Article  CAS  Google Scholar 

  17. Khouw CB, Davis ME (1995) J Catal 151:77–86

    Article  CAS  Google Scholar 

  18. Tatsumi T, Koyano KA, Shimizu Y (2000) Appl Catal A 200:125–134

    Article  CAS  Google Scholar 

  19. Li G, Wang XS, Yan HS, Chen YY, Su QS (2001) Appl Catal A 218:31–38

    Article  CAS  Google Scholar 

  20. Capel-Sanchez MC, Campos-Martin JM, Fierro JLG (2003) Appl Catal A 246:69–77

    Article  CAS  Google Scholar 

  21. Jin SQ, Feng ZC, Fan FT, Li C (2014) Catal Lett 145:468–481

    Article  Google Scholar 

  22. Wang XS, Guo XW, Li G (2002) Catal Today 74:65–75

    Article  CAS  Google Scholar 

  23. Yi YH, Zhou JC, Guo HC, Zhao JL, Su J, Wang L, Wang XS, Gong WM (2013) Angew Chem Int Ed 52:8446–8449

    Article  CAS  Google Scholar 

  24. Xiong G, Cao YY, Guo ZD, Jia QY, Tian FP, Liu LP (2016) Phys Chem Chem Phys 18:190–196

    Article  CAS  Google Scholar 

  25. Wang LL, Xiong G, Su J, Li P, Guo HC (2012) J Phys Chem C 116:9122–9131

    Article  CAS  Google Scholar 

  26. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F, Zecchina A (2001) J Am Chem Soc 123:11409–11419

    Article  CAS  Google Scholar 

  27. Hijar CA, Jacubinas RM, Eckert J, Henson NJ, Hay PJ, Ott KC (2000) J Phys Chem B 104:12157–12164

    Article  CAS  Google Scholar 

  28. Dong JC, Zhu HL, Xiang YJ, Wang Y, An PF, Gong Y, Liang YX, Qiu LM, Zheng A, Peng XX, Lin M, Xu GT, Guo ZY, Chen DL (2016) J Phys Chem C 120:20114–20124

    Article  CAS  Google Scholar 

  29. Li MZ, Yan XY, Zhu MY, Wang MQ, Zhou DH (2018) Catal Sci Technol 8:4975–4984

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 21603023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchen Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, C., He, N., Zhu, Q. et al. Effect of Sodium Ions on Catalytic Performance of TS-1 in Gas-Phase Epoxidation of Propylene with Hydrogen Peroxide Vapor. Catal Lett 150, 281–290 (2020). https://doi.org/10.1007/s10562-019-02948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02948-8

Keywords

Navigation