Skip to main content
Log in

Chirally-Modified Graphite Oxide as Chirality Inducing Support for Asymmetric Epoxidation of Olefins with Grafted Manganese Porphyrin

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A chirality inducer was prepared by graphite oxide (GO) functionalization with enantiopure l-tartrate (GO*) and used as asymmetric support for a covalently-linked manganese porphyrine complex [Mn(TPyP)OAc]. The thereby obtained heterogeneous catalyst, GO*-[Mn(TPyP)OAc], showed excellent performance and ee-values of 92–99% for the asymmetric epoxidation of prochiral olefins with O2 as oxidant and isobutyraldehyde as co-reductant in acetonitrile; linear terminal olefins with 54–76% conversion and quantitative conversion of aromatic olefins. The GO*-[Mn(TPyP)OAc] catalyst is highly active, recyclable, and at the same time simple and inexpensive to prepare with a chiral inducer from the chiral pool. The structure of the catalyst was elucidated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET analysis, FT-IR, Raman, and photoluminescence spectroscopic methods.

Graphic Abstract

Graphite oxide functionalized with an enantiopure group was used as a chirality inducer and asymmetric support for a Mn-porphyrine complex. The thereby obtained heterogeneous catalyst is an excellent enantioselective catalyst for the epoxidation of prochiral olefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Crassous J (2009) Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev 38:830–845

    CAS  PubMed  Google Scholar 

  2. Chen J, Zhang T, Liu X, Shen L (2019) Enantioselective synthesis of (S)-γ-amino alcohols by Ru/Rh/Ir catalyzed asymmetric transfer hydrogenation (ATH) with tunable chiral tetraaza ligands in water. Catal Lett 149:601–609

    CAS  Google Scholar 

  3. Zhang X, Yin J, Yoon J (2014) Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 114:4918–4959

    CAS  PubMed  Google Scholar 

  4. Luanphaisarnnont T, Hanprasit S, Somjit V, Ervithayasuporn V (2018) Chiral pyrrolidine bridged polyhedral oligomeric silsesquioxanes as heterogeneous catalysts for asymmetric michael additions. Catal Lett 148:779–786

    CAS  Google Scholar 

  5. Ding K, Uozumi Y (eds) (2008) Handbook of asymmetric heterogeneous catalysis. Wiley, New Jersey

    Google Scholar 

  6. Jacobsen EN, Pfaltz A, Yamamoto H (eds) (2003) Comprehensive asymmetric catalysis: Supplement 1. Springer, New York

    Google Scholar 

  7. Pélisson CH, Denicourt-Nowicki A, Meriadec C, Greneche JM, Roucoux A (2015) Magnetically recoverable palladium (0) nanocomposite catalyst for hydrogenation reactions in water. ChemCatChem 7:309–315

    Google Scholar 

  8. Kragl U, Dwars T (2001) The development of new methods for the recycling of chiral gcatalysts. Trends Biotechnol 19:442–449

    CAS  PubMed  Google Scholar 

  9. Berijani K, Hosseini-Monfared H (2018) Collaborative effect of Mn-porphyrin and mesoporous SBA-15 in the enantioselective epoxidation of olefins with oxygen. Inorg Chim Acta 471:113–120

    CAS  Google Scholar 

  10. Berijani K, Farokhi A, Hosseini-Monfared H, Janiak C (2018) Enhanced enantioselective oxidation of olefins catalyzed by Mn-porphyrin immobilized on graphite oxide. Tetrahedron 74:2202–2210

    CAS  Google Scholar 

  11. Song CE, Lim JS, Kim SC, Lee KJ, Chi DY (2000) Immobilisation of ketone catalyst: a method to prevent ketone catalyst from decomposing during dioxirane-mediated epoxidation of alkenes. Chem Commun 24:2415–2416

    Google Scholar 

  12. Trindade AF, Gois PM, Afonso CA (2009) Recyclable stereoselective catalysts. Chem Rev 109:418–514

    CAS  PubMed  Google Scholar 

  13. Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed Engl 45:4732–4762

    CAS  PubMed  Google Scholar 

  14. Fraile JM, Garcia JI, Mayoral JA (2008) Noncovalent immobilization of enantioselective catalysts. Chem Rev 109:360–417

    Google Scholar 

  15. Kaushik M, Basu K, Benoit C, Cirtiu CM, Vali H, Moores A (2015) Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. J Am Chem Soc 137:6124–6127

    CAS  PubMed  Google Scholar 

  16. Wen Y, Sheng T, Xue Z, Sun Z, Wang Y, Hu S, Huang Y, Li J, Wu X (2014) Homochiral layered coordination polymers from chiral N-carbamylglutamate and achiral flexible bis (pyridine) ligands: syntheses, crystal structures, and properties. Cryst Growth Des 14:6230–6238

    CAS  Google Scholar 

  17. Dementyev P, Peter M, Adamovsky S, Schauermann S (2015) Chirally-modified metal surfaces: energetics of interaction with chiral molecules. Phys Chem Chem Phys 17:22726–22735

    CAS  PubMed  Google Scholar 

  18. Holland MC, Meemken F, Baiker A, Gilmour R (2015) Chiral imidazolidinone and proline-derived surface modifiers for the Pt-catalysed asymmetric hydrogenation of activated ketones. J Mol Catal A: Chem 396:335–345

    CAS  Google Scholar 

  19. Gellman AJ, Tysoe WT, Zaera F (2015) Surface chemistry for enantioselective catalysis. Catal Lett 145:220–232

    CAS  Google Scholar 

  20. Zahed B, Hosseini-Monfared H (2015) A comparative study of silver-graphite oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: support effect. Appl Surf Sci 328:536–547

    CAS  Google Scholar 

  21. Su C, Loh KP (2012) Carbocatalysts: graphite oxide and its derivatives. Acc Chem Res 46:2275–2285

    Google Scholar 

  22. Fan W, Gao W, Zhang C, Tjiu WW, Pan J, Liu T (2012) Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. J Mater Chem 22:25108–25115

    CAS  Google Scholar 

  23. Monnier JR (2001) The direct epoxidation of higher olefins using molecular oxygen. Appl Catal A 221:73–91

    CAS  Google Scholar 

  24. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphite oxide. ACS Nano 4:4806–4814

    CAS  Google Scholar 

  25. Bhanja P, Das SK, Patra AK, Bhaumik A (2016) Functionalized graphite oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis. RSC Adv 6:72055–72068

    CAS  Google Scholar 

  26. Alavi S, Hosseini-Monfared H, Aleshkevych P (2014) A highly efficient, enantioselective and recyclable mesoporous silica-based Mn(II) catalyst for asymmetric oxidation of thioanisole. RSC Adv 4:48827–48835

    CAS  Google Scholar 

  27. Farokhi A, Monfared HH (2017) Highly efficient asymmetric epoxidation of olefins with a chiral manganese-porphyrin covalently bound to mesoporous SBA-15: support effect. J Catal 352:229–238

    CAS  Google Scholar 

  28. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphite oxide. Chem Soc Rev 39:228–240

    CAS  PubMed  Google Scholar 

  29. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphite oxide. ACS Nano 2:1487–1491

    CAS  PubMed  Google Scholar 

  30. Khoshroo M, Hosseini-Monfared H (2017) Oxidation of sulfides with H2O2 catalyzed by impregnated graphite oxide with Co–Cu–Zn doped Fe3O4/Co3O4–MoO3 nanocomposite in acetonitrile. J Inorg Organomet Polym Mater 27:165–175

    CAS  Google Scholar 

  31. Hosseini SM, Hosseini-Monfared H, Abbasi V (2017) Silver ferrite–graphene nanocomposite and its good photocatalytic performance in air and visible light for organic dye removal. App Organomet Chem 31:e3589

    Google Scholar 

  32. Abbasi V, Hosseini-Monfared H, Hosseini SM (2017) Mn(III)-salan/graphite oxide/magnetite nanocomposite as a highly selective catalyst for aerobic epoxidation of olefins. Appl Organomet Chem 31:e3554

    Google Scholar 

  33. Kim KH, Yang M, Cho KM, Jun YS, Lee SB, Jung HT (2013) High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures. Sci Rep 3:3251

    PubMed  PubMed Central  Google Scholar 

  34. Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Unusual infrared-absorption mechanism in thermally reduced graphite oxide. Nat Mater 9:840–845

    CAS  PubMed  Google Scholar 

  35. Fodor MA, Horváth O, Fodor L, Grampp G, Wankmüller A (2014) Photophysical and photocatalytic behavior of cobalt(III) 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin. Inorg Chem Commun 50:110–112

    CAS  Google Scholar 

  36. Valicsek Z, Horváth O (2013) Application of the electronic spectra of porphyrins for analytical purposes: the effects of metal ions and structural distortions. Microchem J 107:47–62

    CAS  Google Scholar 

  37. Lee KY, Lee YS, Kim S, Ha HM, Bae SE, Huh S, Jang HG, Lee SJ (2013) Morphological diversity of Mn(III) metalloporphyrin-based nano-and microsized CPAs assembled via kinetic and thermodynamic controls and their application in heterogeneous catalysis. CrystEngComm 15:9360–9363

    CAS  Google Scholar 

  38. Chen L, Guo X, Guo B, Cheng S, Wang F (2016) Electrochemical investigation of a metalloporphyrin–graphene composite modified electrode and its electrocatalysis on ascorbic Acid. J Electroanal Chem 760:105–112

    CAS  Google Scholar 

  39. Kabuk HA, İlhan F, Avsar Y, Kurt U, Apaydin O, Gonullu MT (2014) Investigation of leachate treatment with electrocoagulation and optimization by response surface methodology. Clean 42:571–577

    CAS  Google Scholar 

  40. Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M (2013) Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzyme Microb Technol 52:370–376

    CAS  PubMed  Google Scholar 

  41. Collman JP, Hampton PD, Brauman JT (1990) Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 1. A mechanistic study of heme N-alkylation and epoxidation. J Am Chem Soc 112:2977–2986

    CAS  Google Scholar 

  42. Groves JT, Lee J, Marla SS (1997) Detection and characterization of an oxomanganese(V) porphyrin complex by rapid-mixing stopped-flow spectrophotometry. J Am Chem Soc 119:6269–6273

    CAS  Google Scholar 

  43. Monnereau C, Ramos PH, Deutman ABC, Elemans JAAW, Nolte RJM, Rowan AE (2010) Porphyrin macrocyclic catalysts for the processive oxidation of polymer substrates. J Am Chem Soc 132:1529–1531

    CAS  PubMed  Google Scholar 

  44. Den Boer D, Li M, Habets T, Iavicoli P, Rowan AE, Nolte RJM, Elemans JA (2013) Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat Chem 5:621–627

    Google Scholar 

  45. Nam W, Kim HJ, Kim SH, Ho RYN, Valentine JS (1996) Metal complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehydes. A mechanistic study. Inorg Chem 35:1045–1049

    CAS  PubMed  Google Scholar 

  46. Zhou X, Ji H (2010) Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chem Eng J 156:411–417

    CAS  Google Scholar 

  47. Smegal JA, Schardt BC, Hill CL (1983) Isolation, purification, and characterization of intermediate (iodosylbenzene)metalloporphyrin complexes from the (tetraphenylporphinato)manganese(III)-Iodosyl-benzene catalytic hydrocarbon functionalization system. J Am Chem Soc 105:3510–3515

    CAS  Google Scholar 

  48. Nurttila SS, Linnebank PR, Krachko T, Reek JN (2018) Supramolecular approaches to control activity and selectivity in hydroformylation catalysis. ACS Catal 8:3469–3488

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The University of Zanjan is acknowledged for financial support. We thank the Center for Advanced Imaging (CAi) and Sophia Köhler of the Institut für Kolloide und Nanooptik of the Heinrich-Heine-Universität Düsseldorf for their support in obtaining the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hosseini-Monfared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6016 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahadi, E., Hosseini-Monfared, H., Schlüsener, C. et al. Chirally-Modified Graphite Oxide as Chirality Inducing Support for Asymmetric Epoxidation of Olefins with Grafted Manganese Porphyrin. Catal Lett 150, 861–873 (2020). https://doi.org/10.1007/s10562-019-02933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02933-1

Keywords

Navigation