Skip to main content

Advertisement

Log in

Density Functional Theory Study of the Zeolite-Catalyzed Methylation of Benzene with Methanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The reaction coordinates based on Gibbs free energies for the methylation of benzene with methanol over HZSM-5 and Hβ, both concerted and stepwise pathway, were investigated by applying density functional theory. From the estimated adsorption energies of benzene and methanol on these zeolites, stronger guest–host interactions were observed in HZSM-5 compared to Hβ. We find that at low temperatures, the concerted mechanism dominates, however, the mechanism converts to the stepwise pathway at higher temperatures. The formation of methoxy group is found to be the rate-determining step for the stepwise pathway, and the calculated free energy barriers at 673 K were 138 kJ/mol for HZSM-5 and 149 kJ/mol for Hβ, lower than those in the concerted pathway (165 kJ/mol for HZSM-5 and 168 kJ/mol for Hβ), indicating that the stepwise pathway is kinetically favored for the methylation of benzene with methanol at 673 K. Gaseous methane can be produced via one intramolecular hydrogen transfer from the ring carbon to the carbon of methyl group in the protonated toluene species, and the calculated free energy barriers for forming methane over HZSM-5 and Hβ are 112 and 100 kJ/mol, respectively, suggesting that methane is more easily formed over 12-ring Hβ catalyst.

Graphic Abstract

The stepwise pathway is kinetically favored for the methylation of benzene with methanol compared to concerted pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Odedairo T, Al-Khattaf S (2013) Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length: H-ZSM-5 versus mordenite. Catal Today 204:73–84

    CAS  Google Scholar 

  2. Galadima A, Muraza O (2015) Role of zeolite catalysts for benzene removal from gasoline via alkylation: a review. Microporous Mesoporous Mater 213:169–180

    CAS  Google Scholar 

  3. Ahn JH, Kolvenbach R, Gutiérrez OY, Al-Khattaf SS, Jentys A, Lercher JA (2015) Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous Mesoporous Mater 210:52–59

    CAS  Google Scholar 

  4. Wang Q, Han W, Hu H, Lyu J, Xu X, Zhang Q, Wang H, Li X (2017) Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol. Chin J Chem Eng 25:1777–1783

    Google Scholar 

  5. Hu H, Lyu J, Rui J, Cen J, Zhang Q, Wang Q, Han W, Li X (2016) The effect of Si/Al ratio on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol. Catal Sci Technol 6:2647–2652

    CAS  Google Scholar 

  6. Wen Z (2016) East China University of Science and Technology, Doctor Thesis

  7. Lyu J, Hu H, Rui J, Zhang Q, Cen J, Han W, Wang Q, Chen X, Pan Z, Li X (2017) Nitridation: a simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol. Chin Chem Lett 28:482–486

    CAS  Google Scholar 

  8. Lyu J, Hu H, Tait C, Rui J, Lou C, Wang Q, Han W, Zhang Q, Pan Z, Li X (2017) Benzene alkylation with methanol over phosphate modified hierarchical porous ZSM-5 with tailored acidity. Chin J Chem Eng 25:1187–1194

    CAS  Google Scholar 

  9. Gao K, Li S, Wang L, Wang W (2015) Study of the alkylation of benzene with methanol for the selective formation of toluene and xylene over Co3O4-La2O3/ZSM-5. RSC Adv 5:45098–45105

    CAS  Google Scholar 

  10. Hu H, Zhang Q, Cen J, Li X (2014) High suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum. Catal Commun 57:129–133

    CAS  Google Scholar 

  11. Hu H, Zhang Q, Cen J, Li X (2014) Catalytic activity of Pt modified hierarchical ZSM-5 catalysts in benzene alkylation with methanol. Catal Lett 145:715–722

    Google Scholar 

  12. Li L, Chen R, Dai J, Sun Y, Zhang Z, Li X, Nie X, Song C, Guo X (2017) Reaction mechanism of benzene methylation with methanol over H-ZSM-5 catalyst. Acta Phys-Chim Sin 33:769–779

    CAS  Google Scholar 

  13. De Wispelaere K, Martínez-Espín JS, Hoffmann MJ, Svelle S, Olsbye U, Bligaard T (2018) Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments. Catal Today 312:35–43

    Google Scholar 

  14. Svelle S, Visur M, Olsbye U, Bjørgen M (2011) Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: a review. Top Catal 54:897–906

    CAS  Google Scholar 

  15. Van Der Mynsbrugge J, Visur M, Olsbye U, Beato P, Bjorgen M, Van Speybroeck V, Svelle S (2012) Methylation of benzene by methanol: single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts. J Catal 292:201–212

    Google Scholar 

  16. Zalazar MF, Paredes EN, Romero Ojeda GD, Cabral ND, Peruchena NM (2018) Study of confinement and catalysis effects of the reaction of methylation of benzene by methanol in H-Beta and H-ZSM-5 zeolites by topological analysis of electron density. J Phys Chem C 122:3350–3362

    CAS  Google Scholar 

  17. Brogaard RY, Henry R, Schuurman Y, Medford AJ, Moses PG, Beato P, Svelle S, Nørskov JK, Olsbye U (2014) Methanol-to-hydrocarbons conversion: the alkene methylation pathway. J Catal 314:159–169

    CAS  Google Scholar 

  18. Wen Z, Yang D, He X, Li Y, Zhu X (2016) Methylation of benzene with methanol over HZSM-11 and HZSM-5: a density functional theory study. J Mol Catal A 424:351–357

    CAS  Google Scholar 

  19. Wen Z, Xia T, Liu M, Zhu K, Zhu X (2016) Methane formation mechanism in methanol to hydrocarbon process: a periodic density functional theory study. Catal Commun 75:45–49

    CAS  Google Scholar 

  20. Wen Z, Yang D, Yang F, Wei Z, Zhu X (2016) Methylation of toluene with methanol over HZSM-5: a periodic density functional theory investigation. Chin J Catal 37:1882–1890

    CAS  Google Scholar 

  21. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    CAS  Google Scholar 

  22. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  24. Heyden A, Bell AT, Keil FJ (2005) Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys 123:224101–224114

    PubMed  Google Scholar 

  25. Brogaard RY, Moses PG, Nørskov JK (2012) Modeling van der Waals interactions in zeolites with periodic DFT: pysisorption of n-Alkanes in ZSM-22. Catal Lett 142:1057–1060

    CAS  Google Scholar 

  26. Ghorbanpour A, Rimer JD, Grabow LC (2014) Periodic, vdW-corrected density functional theory investigation of the effect of Al siting in H-ZSM-5 on chemisorption properties and site-specific acidity. Catal Commun 52:98–102

    CAS  Google Scholar 

  27. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154

    Google Scholar 

  28. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2: DFT study. J Am Chem Soc 132:11525–11538

    CAS  PubMed  Google Scholar 

  29. Lide DR (2009) Handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton

    Google Scholar 

  30. Clark LA, Sierka M, Sauer J (2004) Computational elucidation of the transition state shape selectivity phenomenon. J Am Chem Soc 126:936–947

    CAS  PubMed  Google Scholar 

  31. Sun X, Hung C, Zhang J, Chen B (2009) Location of Al and acid strength of brønsted acid in beta zeolite. Acta Phys-Chim Sin 25:1136–1142

    CAS  Google Scholar 

  32. Fujita H, Kanougi T, Atoguchi T (2006) Distribution of Brønsted acid sites on beta zeolite H-BEA: a periodic density functional theory calculation. Appl Catal A 313:160–166

    CAS  Google Scholar 

  33. Kulkarni BS, Krishnamurty S, Pal S (2010) Probing Lewis acidity and reactivity of Sn- and Ti-beta zeolite using industrially important moieties: a periodic density functional study. J Mol Catal A 329:36–43

    CAS  Google Scholar 

  34. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2008) Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. J Am Chem Soc 131:816–825

    Google Scholar 

  35. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: an ONIOM study. J Phys Chem C 113:6654–6662

    CAS  Google Scholar 

  36. Van Der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) Efficient approach for the computational study of alcohol and nitrile adsorption in H-ZSM-5. J Phys Chem C 116:5499–5508

    Google Scholar 

  37. Nie X, Janik MJ, Guo X, Song C (2012) Shape-Selective methylation of 2-methylnaphthalene with methanol over H-ZSM-5 zeolite: a computational study. J Phys Chem C 116:4071–4082

    CAS  Google Scholar 

  38. Vos AM, Rozanska X, Schoonheydt RA, Van Santen RA, Hutschka F, Hafner J (2001) A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. J Am Chem Soc 123:2799–2809

    CAS  PubMed  Google Scholar 

  39. Saepurahman Visur M, Olsbye U, Bjørgen M, Svelle S (2011) In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Top Catal 54:1293–1301

    CAS  Google Scholar 

  40. Wen Z, Yang D, Zhu X (2017) Alkylation of benzene and methanol and research progress of its catalysts. Mod Chem Ind 37:41–44

    Google Scholar 

  41. Sun X, Mueller S, Liu Y, Shi H, Haller GL, Sanchez-Sanchez M, Van Veen AC, Lercher JA (2014) On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J Catal 317:185–197

    CAS  Google Scholar 

  42. Muller S, Liu Y, Vishnuvarthan M, Sun X, Van Veen AC, Haller GL, Sanchez-Sanchez M, Lercher JA (2015) Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J Catal 325:48–59

    Google Scholar 

Download references

Acknowledgements

This work was sponsored financially by the Natural Science Foundation of Shandong Province (ZR2018LB028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhao Wen or Xuedong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Zhu, H. & Zhu, X. Density Functional Theory Study of the Zeolite-Catalyzed Methylation of Benzene with Methanol. Catal Lett 150, 21–30 (2020). https://doi.org/10.1007/s10562-019-02931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02931-3

Keywords

Navigation