Skip to main content
Log in

Yttrium Oxide Supported La2O3 Nanomaterials for Catalytic Oxidative Cracking of n-Propane to Olefins

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

La2O3 nanorods were prepared by simple hydrothermal synthesis method. Yttrium oxide (1, 3, 5 and 7 wt%) supported La2O3 and SO42− incorporated La2O3 nanorods were prepared impregnation method and used as catalysts in oxidative cracking of n-propane. The pure La2O3 nanorods exhibited 15% n-propane conversion with 22% olefins (ethane and propene) selectivity. Considerable improvement in n-propane conversion was observed in case of 3 wt% yttrium oxide supported on La2O3 nanorods (25% conversion of n-propane and 36% selectivity to olefins) at reaction temperature of 550 °C. Interestingly, 5 wt% yttrium oxide supported 10 wt% SO42−/La2O3 nanorod sample exhibited superior performance in n-propane conversion (42%) and olefins selectivity (54%). The yttrium oxide loading and sulfation of La2O3 nanorods influenced the catalytic activity. The characterization of synthesized nanomaterials was performed using elemental analysis, XRD, FT-IR, N2-physisorption, SEM, XPS and H2-TPR techniques. The obtained results indicated that yttrium oxide was highly dispersed over the La2O3 nanorods because of strong interaction between the two rare earth metal oxides. Additionally, deposition of yttrium oxide to sulfated La2O3 nanorods increased the surface area and the amount of Lewis acid sites (for the activation of n-propane) on La2O3 nanorods. Yttrium oxide supported sulfated La2O3 catalyst showed no deactivation during the 24 h of reaction and without coke formation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bender M (2014) ChemBioEng Rev 1:136

    CAS  Google Scholar 

  2. Louis B, Pereira M, Santos F, Esteves P, Sommer J (2010) Chem Eur J 16:573

    CAS  PubMed  Google Scholar 

  3. Corma A, Melo FV, Sauvanaud L, Ortega F (2005) Catal Today 107–108:699

    Google Scholar 

  4. Xu B, Sievers C, Hong SB, Prins R, van Bokhoven JA (2006) J Catal 244:163

    CAS  Google Scholar 

  5. Subramanian R, Panuccio GJ, Krummenacher JJ, Leeb IC, Schmidt LD (2004) Chem Eng Sci 59:5501

    CAS  Google Scholar 

  6. Leveles L, Seshan K, Lercher JA, Lefferts L (2003) J Catal 218:307

    CAS  Google Scholar 

  7. Boyadjian CA, Lefferts L, Seshan K (2010) Appl Catal Gen A 372:167

    CAS  Google Scholar 

  8. Boyadjian C, Lefferts L (2018) Eur J Inorg Chem 2018:1956

    CAS  Google Scholar 

  9. Alonso A, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Environ Sci Technol 46:3406

    CAS  PubMed  Google Scholar 

  10. Sanchez-Castillo MA, Madon RJ, Dumesic JA (2005) J Phys Chem B 109:2164

    CAS  PubMed  Google Scholar 

  11. Vogt ETC, Weckhuysen BM (2015) Chem Soc Rev 44:7342

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N (2000) Catal Surv Jpn 4:157

    CAS  Google Scholar 

  13. Nakamura M, Takenaka S, Yamanaka I, Otsuka K (2000) Stud Surf Sci Catal 130:1781

    Google Scholar 

  14. Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Murata K, Yoshimura Y, Mizukami F (2002) Appl Catal A 230:195

    CAS  Google Scholar 

  15. Sa J, Ace M, Delgado JJ, Goguet A, Hardacre C, Morgan K (2011) ChemCatChem 3:394

    CAS  Google Scholar 

  16. Brown ASC, Hargreaves JSJ (1999) Green Chem 1:17

    CAS  Google Scholar 

  17. Venkatesh KR, Hu J, Dogan C, Tierney JW, Wender I (1995) Energy Fuels 9:888

    CAS  Google Scholar 

  18. Narasimharao K, Ali TT (2013) Catal Lett 143:1074

    CAS  Google Scholar 

  19. Al-Sultan FS, Basahel SN, Narasimharao K (2018) Fuel 233:796

    CAS  Google Scholar 

  20. Ding J, Wu Y, Sun W, Li Y (2006) J Rare Earths 24:440

    Google Scholar 

  21. Gunawidjaja R, Diez-Riega H, Eilers H (2015) Powder Technol 271:255

    CAS  Google Scholar 

  22. Klingenberg B, Vannice MA (1996) Chem Mater 8:2755

    CAS  Google Scholar 

  23. Som S, Sharma SK, Shripathi T (2013) J Fluoresc 23:439

    CAS  PubMed  Google Scholar 

  24. Wang B, Wu X, Ran R, Si Z, Weng D (2012) J Mol Catal A 361–362:98

    Google Scholar 

  25. Xu JQ, Xiong SJ, Wu XL, Li TH, Shen JC, Chu PK (2013) J Appl Phys 114:093512

    Google Scholar 

  26. Sunding MF, Hadidi K, Diplas S, Løvvik OM, Norby TE, Gunaes AE (2011) J Electron Spectrosc Relat Phenom 184:399

    CAS  Google Scholar 

  27. Dallera C, Giarda K, Ghiringhelli G, Tagliaferri A, Braicovich L, Brookes NB (2001) Phys Rev 64:153104

    Google Scholar 

  28. Moulder JF, Stickle WF, Sobol PW, Bomben KD (1992) Handbook of x-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  29. Smirnov MY, Kalinkin AV, Pashis AV, Sorokin AM, Noskov AS, Kharas KC, Bukhtiyarov VI (2005) J Phys Chem B 109:11712

    CAS  PubMed  Google Scholar 

  30. Tresintsi S, Simeonidis K, Pliatsikas N, Vourlias G, Patsalas P, Mitrakas M (2014) J Solid State Chem 213:145

    CAS  Google Scholar 

  31. Stypula B, Stoch J (1994) Corros Sci 36:2159

    CAS  Google Scholar 

  32. Baltrusaitis J, Cwiertny DM, Grassian VH (2007) Phys Chem Chem Phys 9:5542

    CAS  PubMed  Google Scholar 

  33. Howng WY, Thorn RJ (1980) J Phys Chem Solids 41:75

    CAS  Google Scholar 

  34. Stoychev D, Valov I, Stefanov P, Atanasova G, Stoycheva M, Marinova T (2003) Mater Sci Eng, C 23:123

    Google Scholar 

  35. Sasikala R, Varma S, Gupta NM, Kulshreshtha SK (2001) J Mater Sci Lett 20:1131

    CAS  Google Scholar 

  36. Au CT, Zhou TJ, Lai WJ, Ng CF (1997) Catal Lett 49:53

    CAS  Google Scholar 

  37. Lange J-P, Gutsze A, Karge HG (1988) J Catal 114:136

    CAS  Google Scholar 

  38. Akay G (2016) Catalysts 6:80

    Google Scholar 

  39. Umar A, Kumar R, Akhtar MS, Kumar G, Kim SH (2015) J Colloid Interface Sci 454:61

    CAS  PubMed  Google Scholar 

  40. Bazin P, Saur O, Marie O, Daturi M, Lavalley JC, Le Govic AM (2012) Appl Catal B 119–120:207

    Google Scholar 

  41. Si Z, Weng D, Wu X, Ma Z, Ma J, Ran R (2013) Catal Today 201:122

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank colleagues at Chemistry Department, King Abdulaziz University, Jeddah for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katabathini Narasimharao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sultan, F.S., Basahel, S.N. & Narasimharao, K. Yttrium Oxide Supported La2O3 Nanomaterials for Catalytic Oxidative Cracking of n-Propane to Olefins. Catal Lett 150, 185–195 (2020). https://doi.org/10.1007/s10562-019-02927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02927-z

Keywords

Navigation