Skip to main content
Log in

Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Highly selective hydrogenation of furfural to furan-2-ylmethanol (FM) in isopropanol was achieved over a novel magnetic Cu–Co/C derived from zeolitic imidazolate frameworks prepared by galvanic replacement reaction. Furfural conversion and FM selectivity (FMS) are 100% and 97.2%, respectively, at 200 °C. FMS was held around 95% after 5-times recycle of the Cu–Co/C. In addition, cinnamaldehyde was completely converted with 96.8% of phenylpropanol selectivity over the Cu–Co/C at 150 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mariscal R, Torres PM, Ojeda M, Sadaba I, Granados ML (2016) Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  3. Gong WB, Chen C, Zhang HM, Wang GZ, Zhao HJ (2018) Catal Sci Technol 8:5506–5514

    Article  CAS  Google Scholar 

  4. Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Fuel 202:1–11

    Article  CAS  Google Scholar 

  5. Ishida T, Kume K, Kinjo K, Honma T, Nakada K, Ohashi H, Yokoyama T, Hamasaki A, Murayama H, Izawa Y, Utsunomiya M, Tokunaga M (2016) ChemSusChem 9:3441–3448

    Article  CAS  PubMed  Google Scholar 

  6. Addepally U, Thulluri C (2015) Fuel 159:935–942

    Article  CAS  Google Scholar 

  7. An S, Song D, Sun Y, Zhang QQ, Zhang PP, Guo YH (2018) ACS Sustain Chem Eng 6:3113–3123

    Article  CAS  Google Scholar 

  8. Hengne AM, Kamble SB, Rode CV (2013) Green Chem 15:2540–2547

    Article  CAS  Google Scholar 

  9. Chada RR, Koppadi KS, Enumula SS, Kondeboina K, Kamaraju SRR, Burri DR (2018) Catal Lett 148:1731–1738

    Article  CAS  Google Scholar 

  10. Song DY, An S, Sun YN, Guo YH (2016) J Catal 333:184–199

    Article  CAS  Google Scholar 

  11. Ghashghaee M, Sadjadi S, Shirvani S, Farzaneh V (2017) Catal Lett 147:318–327

    Article  CAS  Google Scholar 

  12. Marchi AJ (2013) Catal Today 213:87–92

    Article  CAS  Google Scholar 

  13. Mironenko RM, Belskaya OB, Gulyaeva TI, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2015) Catal Today 249:145–152

    Article  CAS  Google Scholar 

  14. Taylor MJ, Durndell LJ, Isaacs MA, Parlett CMA, Wilson K, Lee AF, Kyriakou G (2016) Appl Catal B Environ 180:580–585

    Article  CAS  Google Scholar 

  15. Dohade MG, Dhepe PL (2017) Green Chem 19:1144–1154

    Article  CAS  Google Scholar 

  16. Aldosari OF, Iqbal S, Miedziak PJ, Brett GL, Jones DR, Liu X, Edwards JK, Morgan DJ, Knight DK, Hutchings GJ (2016) Catal Sci Technol 6:234–242

    Article  Google Scholar 

  17. Chang X, Liu AF, Cai B, Luo JY, Pan H, Huang YB (2016) ChemSusChem 9:3330–3337

    Article  CAS  PubMed  Google Scholar 

  18. Jiménez-Gómez Carmen P, Cecilia JA, Franco-Duro FI, Pozo M, Moreno-Tost R, Maireles-Torres P (2018) Mol Catal 455:121–131

    Article  CAS  Google Scholar 

  19. Audemar M, Ciotonea C, De Oliveira Vigier K, Royer S, Ungureanu A, Dragoi B, Dumitriu E, Jerome F (2015) ChemSusChem 8:1885–1891

    Article  CAS  PubMed  Google Scholar 

  20. Gong WB, Chen C, Zhang HM, Zhang Y, Zhang YX, Wang GZ, Zhao HJ (2017) J Mol Catal A Chem 429:51–59

    CAS  Google Scholar 

  21. Khromova SA, Bykova MV, Bulavchenko OA, Ermakov DY, Saraev AA, Kaichev VV, Venderbosch RH, Yakovlev VA (2016) Top Catal 59:1413–1423

    Article  CAS  Google Scholar 

  22. Wang Y, Miao YN, Li S, Gao LJ, Xiao GM (2017) Mol Catal 436:128–137

    Article  CAS  Google Scholar 

  23. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Chem Soc Rev 41:8099–8139

    Article  CAS  PubMed  Google Scholar 

  24. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41:8075–8098

    Article  CAS  PubMed  Google Scholar 

  25. Dhakshinamoorthy A, Garcia H (2012) Chem Soc Rev 41:5262–5284

    Article  CAS  PubMed  Google Scholar 

  26. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) J Am Chem Soc 137:1572–1580

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Yin FX, Chen BH, He XB, Lv PL, Ye CY, Liu DJ (2017) Appl Catal B Environ 205:55–67

    Article  CAS  Google Scholar 

  28. Li J, Liu JL, Zhou HJ, Fu Y (2016) ChemSusChem 9:1339–1347

    Article  CAS  PubMed  Google Scholar 

  29. Deng YJ, Dong YY, Wang GH, Sun KL, Shi XD, Zheng L, Li XH, Liao SJ (2017) ACS Appl Mater Inter 9:9699–9709

    Article  CAS  Google Scholar 

  30. Shang L, Yu HJ, Huang X, Bian T, Shi R, Zhao YF, Waterhouse GIN, Wu LZ, Tung CH, Zhang TR (2016) Adv Mater 28:1668–1674

    Article  CAS  PubMed  Google Scholar 

  31. Fulajtárova K, Soták T, Hronec M, Vávra I, Dobrocka E, Omastová M (2015) Appl Catal A Gen 502:78–85

    Article  CAS  Google Scholar 

  32. Shen K, Chen L, Long JL, Zhong W, Li YW (2015) ACS Catal 5:5264–5271

    Article  CAS  Google Scholar 

  33. He ZH, Li N, Wang K, Wang WT, Liu ZT (2019) Mol Catal 470:120–126

    Article  Google Scholar 

  34. Marchi AJ, Cosimo JID, Apesteguia CR (1992) Catal Today 15:383–394

    Article  CAS  Google Scholar 

  35. Deng SY, Chu W, Xu HY, Shi LM, Huang LH (2008) J Nat Gas Chem 17:369–373

    Article  CAS  Google Scholar 

  36. Yin AY, Guo XY, Dai WL, Fan KN (2009) J Phys Chem C 113:11003–11013

    Article  CAS  Google Scholar 

  37. Huang ZW, Cui F, Xue JJ, Zuo JL, Chen J, Xia CG (2012) Catal Today 183:42–51

    Article  CAS  Google Scholar 

  38. Singh SA, Mukherjee S, Madras G (2019) Mol Catal 466:167–180

    Article  CAS  Google Scholar 

  39. Singh SA, Madras G (2015) Appl Catal A Gen 504:463–475

    Article  CAS  Google Scholar 

  40. Li J, Lu GZ, Wu GS, Mao DS, Wang YQ, Guo Y (2012) Catal Sci Technol 2:1865–1871

    Article  CAS  Google Scholar 

  41. Hronec M, Fulajtarová K (2012) Catal Commun 24:100–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Joint Fund from the National Key Research and Development Program of China (Grant 2018YFB0604602) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Yong Wei.

Ethics declarations

Conflicts of interest

Each contributing author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZX., Wei, XY., Yang, Z. et al. Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C. Catal Lett 150, 178–184 (2020). https://doi.org/10.1007/s10562-019-02925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02925-1

Keywords

Navigation