Skip to main content
Log in

Molecular Structural Motifs and O2 Activation Inspired by Enzymes and Solid Catalysts

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The active sites found on the surfaces of heterogeneous catalysts, in enzymes and in solution chemistry bear more resemblance with regard to structure and reactivity than usually assumed. This is illustrated in this perspective article with a few precedent cases showing how the different areas may benefit from each other, when treated together. Findings concerning the methane-oxidizing sites inherent to oxygenated Cu-ZSM-5 are discussed with a view on the active site of the pMMO and models thereof. Polydentate siloxide ligands were found suitable to simulate the ligation of transition metal ions by zeolite frameworks or silica surfaces, so that corresponding iron complexes turned out to be valuable spectroscopic models for the active sites of iron-modified zeolites. Polynuclear copper siloxides proved advantageous precursors for the generation of novel heterogeneous oxidation catalysts. Combining the findings that chromium sites on silica supports possess unique properties and that chromium(II) complexes in solution exhibit interesting reactivities towards dioxygen led to the development of chromium(II) siloxide compounds with unique features for O2 activation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13

Similar content being viewed by others

References

  1. Nakamura M, Matsuo K, Ito S, Nakamura E (2004) Iron-catalyzed cross-coupling of primary and secondary alkyl halides with aryl grignard reagents. J Am Chem Soc 126:3686–3687

    CAS  PubMed  Google Scholar 

  2. Joyner R, Stockenhuber M (1999) Preparation, characterization, and performance of Fe–ZSM-5 catalysts. J Phys Chem B 103:5963–5976

    CAS  Google Scholar 

  3. Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    CAS  PubMed  Google Scholar 

  4. Ye R, Zhao J, Wickemeyer BB, Toste FD, Somorjai GA (2018) Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat Catal 1:318–325

    Google Scholar 

  5. Bornscheuer U, Fischer RW, Gooßen LJ, Schlögl R, Schonmäcker R, Schunk S (2015) Positionspapier Katalytische Oxidationsreaktionen als Schlüsseltechnologie. White Paper. Deutsche Gesellschaft für Katalyse

  6. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ (2001) Aktivierung von Disauerstoff und Hydroxylierung von Methan durch lösliche Methan-Monooxygenase: eine Geschichte von zwei Eisenatomen und drei Proteinen. Angew Chem 113:2860–2888

    Google Scholar 

  7. Kistiakowsky GB, Van Artsdalen ER (1944) Bromination of hydrocarbons. I. Photochemical and thermal bromination of methane and methyl bromine. Carbon–hydrogen bond strength in methane. J Chem Phys 12:469–478

    CAS  Google Scholar 

  8. Olah GA, Goeppert A, Prakash GKS (2006) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim

    Google Scholar 

  9. Christmann M (2008) Selective oxidation of aliphatic C–H bonds in the synthesis of complex molecules. Angew Chem Int Ed 47:2740–2742

    CAS  Google Scholar 

  10. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Copper active sites in biology. Chem Rev 114:3659–3853

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cramer CJ, Tolman WB (2007) Mononuclear Cu–O2 complexes: geometries, spectroscopic properties, electronic structures, and reactivity. Acc Chem Res 40:601–608

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirica LM, Ottenwaelder X, Stack TDP (2004) Structure and spectroscopy of copper–dioxygen complexes. Chem Rev 104:1013–1046

    CAS  PubMed  Google Scholar 

  13. Lewis EA, Tolman WB (2004) Reactivity of dioxygen–copper systems. Chem Rev 104:1047–1076

    CAS  PubMed  Google Scholar 

  14. Schindler S (2000) Reactivity of copper(I) complexes towards dioxygen. Eur J Inorg Chem 2000:2311–2326

    Google Scholar 

  15. Quist DA, Diaz DE, Liu JJ, Karlin KD (2017) Activation of dioxygen by copper metalloproteins and insights from model complexes. J Biol Inorg Chem 22:253–288

    CAS  PubMed  Google Scholar 

  16. Kindermann N, Bill E, Dechert S, Demeshko S, Reijerse E, Meyer F (2015) A ferromagnetically coupled (S = 1) peroxodicopper(II) complex. Angew Chem Int Ed 54:1738–1743

    CAS  Google Scholar 

  17. Itoh S, Fukuzumi S (2007) Monooxygenase activity of type 3 copper proteins. Acc Chem Res 40:592–600

    CAS  PubMed  Google Scholar 

  18. Kitajima N, Moro-oka Y (1994) Copper–dioxygen complexes. Inorganic and bioinorganic perspectives. Chem Rev 94:737–757

    CAS  Google Scholar 

  19. Haack P, Limberg C (2014) Molecular CuII–O–CuII complexes: still waters run deep. Angew Chem Int Ed 53:4282–4293

    CAS  Google Scholar 

  20. Obias HV, Lin Y, Murthy NN et al (1998) Peroxo-, Oxo-, and hydroxo-bridged dicopper complexes: observation of exogenous hydrocarbon substrate oxidation. J Am Chem Soc 120:12960–12961

    CAS  Google Scholar 

  21. Réglier M, Jorand C, Waegell B (1990) Binuclear copper complex model of tyrosinase. J Chem Soc, Chem Commun 107(24):1752–1755

    Google Scholar 

  22. Karlin KD, Gultneh Y, Hayes JC, Zubieta J (1984) Copper(I)–dioxygen reactivity. 2. Reaction of a three-coordinate copper(I) complex with dioxygen, with evidence for a binuclear oxo–copper(II) species: structural characterization of a parallel–planar dihydroxo-bridged dimer. Inorg Chem 23:519–521

    CAS  Google Scholar 

  23. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci USA 106:18908–18913

    CAS  PubMed  Google Scholar 

  24. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J Am Chem Soc 127:1394–1395

    CAS  PubMed  Google Scholar 

  25. Snyder BER, Vanelderen P, Schoonheydt RA, Sels BF, Solomon EI (2018) Second-sphere effects on methane hydroxylation in Cu-zeolites. J Am Chem Soc 140:9236–9243

    CAS  PubMed  Google Scholar 

  26. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler T, Rosenzweig AC (2010) Oxidation of methane by a biological dicopper centre. Nature 465:115–119

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Culpepper MA, Cutsail GE, Hoffman BM, Rosenzweig AC (2012) Evidence for oxygen binding at the active site of particulate methane monooxygenase. J Am Chem Soc 134:7640–7643

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Haack P, Limberg C, Kärgel A, Greco C, Dokic J, Braun B, Pfaff FF, Mebs S, Ray K, Limberg C (2013) Access to a CuII–O–CuII motif: spectroscopic properties, solution structure, and reactivity. J Am Chem Soc 135:16148–16160

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haack P, Limberg C, Ray K, Braun B, Kuhlmann U, Hildebrandt P, Herwig C (2011) Dinuclear copper complexes based on parallel β-diiminato binding sites and their reactions with O2: evidence for a Cu–O–Cu entity. Inorg Chem 50:2133–2142

    CAS  PubMed  Google Scholar 

  30. Vanelderen P, Snyder BER, Tsai M-L, Hadt RG, Vancauwenbergh J, Coussens O, Schoonheydt RA, Sels BF, Solomon EI (2015) Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation. J Am Chem Soc 137:6383–6392

    CAS  PubMed  Google Scholar 

  31. Ali G, VanNatta PE, Ramirez DA, Light KM, Kieber-Emmons MT (2017) Thermodynamics of a μ-oxo dicopper(II) complex for hydrogen atom abstraction. J Am Chem Soc 139:18448–18451

    CAS  PubMed  Google Scholar 

  32. Li ST, Braun-Cula B, Hoof S, Dürr M, Ivanović-Burmazović I, Limberg C (2016) Ligands with two different binding sites and O2 reactivity of their copper(I) complexes. Eur J Inorg Chem (25):4017–4027

    CAS  Google Scholar 

  33. Li ST, Braun-Cula B, Hoof S, Limberg C (2018) Copper(I) complexes based on ligand systems with two different binding sites: synthesis, structures and reaction with O2. Dalton Trans 47(2):544–560

    PubMed  Google Scholar 

  34. Cao L, Caldararu O, Rosenzweig AC, Ryde U (2018) Quantum refinement does not support dinuclear copper sites in crystal structures of particulate methane monooxygenase. Angew Chem 130:168–172

    Google Scholar 

  35. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA (2015) Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat Commun 6:1–9

    Google Scholar 

  36. Schax F, Braun B, Limberg C (2014) A tripodal trisilanol ligand and its complexation behavior towards CuI, CuII, and ZnII. Eur J Inorg Chem 2014:2124–2130

    CAS  Google Scholar 

  37. Nauert SL, Schax F, Limberg C, Notestein JM (2016) Cyclohexane oxidative dehydrogenation over copper oxide catalysts. J Catal 341:180–190

    CAS  Google Scholar 

  38. Tan G, Yang Y, Chu C, Zhu H, Roesky HW (2010) Cu24O24Si8R8: organic soluble 56-membered copper(I) siloxane cage and its use in homogeneous catalysis. J Am Chem Soc 132:12231–12233

    CAS  PubMed  Google Scholar 

  39. Schax F, Limberg C, Mügge C (2012) Copper(I) siloxides—aggregated solid-state structures, Cu–Cu interactions and dynamic solution behavior. Eur J Inorg Chem 2012:4661–4668

    CAS  Google Scholar 

  40. Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2010) Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths. J Catal 269:421–431

    CAS  Google Scholar 

  41. Meyet J, Searles K, Newton MA, Wörle M, van Bavel AP, Horton AD, van Bokhoven JA, Copéret C (2019) Monomeric copper(II) sites supported on alumina selectively convert methane to methanol. Angew Chem Int Ed 58(29):9841–9845

    CAS  Google Scholar 

  42. Cho J, Woo J, Nam W (2010) An “end-on” chromium(III)-superoxo complex: crystallographic and spectroscopic characterization and reactivity in C–H bond activation of hydrocarbons. J Am Chem Soc 132:5958–5959

    CAS  PubMed  Google Scholar 

  43. Bakac A, Scott SL, Espenson JH, Rodgers KR (1995) Interaction of chromium(II) complexes with molecular oxygen. Spectroscopic and kinetic evidence for.eta.1-superoxo complex formation. J Am Chem Soc 117:6483–6488

    CAS  Google Scholar 

  44. Cho J, Woo J, Nam W (2012) A chromium(III)–superoxo complex in oxygen atom transfer reactions as a chemical model of cysteine dioxygenase. J Am Chem Soc 134:11112–11115

    CAS  PubMed  Google Scholar 

  45. Qin K, Incarvito CD, Rheingold AL, Theopold KH (2002) A structurally characterized chromium(III) superoxide complex features “side-on” bonding. Angew Chem Int Ed 41:2333–2335

    CAS  Google Scholar 

  46. Yokoyama A, Han JE, Cho J, Kubo M, Ogura T, Siegler MA, Karlin KD, Nam W (2012) Chromium(IV)–peroxo complex formation and its nitric oxide dioxygenase reactivity. J Am Chem Soc 134:15269–15272

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hess A, Hörz MR, Liable-Sands LM et al (1999) Insertion von O2 in eine Cr-C(Phenyl)-Bindung—Mechanismus der Bildung des paramagnetischen d2-Oxokomplexes [TptBu, MeCrIV(O)OPh]. Angew Chem 111:126–128

    Google Scholar 

  48. Thomas JM (2014) The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys Chem Chem Phys 16:7647–7661

    CAS  PubMed  Google Scholar 

  49. Conley MP, Delley MF, Siddiqi G, Lapadula G, Norsic S, Monteil V, Safanova OV, Copéret C (2014) Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C–H bond activation. Angew Chem Int Ed 53:1872–1876

    Google Scholar 

  50. Schax F, Bill E, Herwig C, Limberg C (2014) Dioxygen activation by siloxide complexes of chromium(II) and chromium(IV). Angew Chem Int Ed 53:12741–12745

    CAS  Google Scholar 

  51. Lindhorst AC, Haslinger S, Kühn FE (2015) Molecular iron complexes as catalysts for selective C–H bond oxygenation reactions. Chem Commun 51:17193–17212

    CAS  Google Scholar 

  52. Ausavasukhi A, Sooknoi T (2015) Oxidation of tetrahydrofuran to butyrolactone catalyzed by iron-containing clay. Green Chem 17:435–441

    CAS  Google Scholar 

  53. Schax F, Suhr S, Bill E, Braun B, Herwig C, Limberg C (2015) A heterobimetallic superoxide complex formed through O2 activation between chromium(II) and a lithium cation. Angew Chem Int Ed 54:1352–1356

    CAS  Google Scholar 

  54. Yao S, Xiong Y, Vogt M, Grützmacher H, Herwig C, Limberg C, Dries M (2009) O–O bond activation in heterobimetallic peroxides: synthesis of the peroxide [LNi(μ,η 2:η 2-O2)K] and its conversion into a bis(μ-hydroxo) nickel zinc complex. Angew Chem Int Ed 48:8107–8110

    CAS  Google Scholar 

  55. Park YJ, Ziller JW, Borovik AS (2011) The effects of redox-inactive metal ions on the activation of dioxygen: isolation and characterization of a heterobimetallic complex containing a MnIII–(μ-OH)–CaIII core. J Am Chem Soc 133:9258–9261

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dalle KE, Gruene T, Dechert S, Demeshko S, Meyer F (2014) Weakly coupled biologically relevant CuII 2(μ-η11-O2) cis-peroxo adduct that binds side-on to additional metal ions. J Am Chem Soc 136:7428–7434

    CAS  PubMed  Google Scholar 

  57. Li F, Van Heuvelen KM, Meier KK, Münck E, Que L Jr (2013) Sc3+-triggered oxoiron(IV) formation from O2 and its non-heme iron(II) precursor via a Sc3+-peroxo-Fe3+ intermediate. J Am Chem Soc 135:10198–10201

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wind M-L, Hoof S, Herwig C, Braun B, Limberg C (2019) The influence of alkali metal ions on the stability and reactivity of chromium(III) superoxide moieties spanned by siloxide ligands. Chem Eur J 25:5743–5750

    CAS  PubMed  Google Scholar 

  59. Panov GI (2000) Advances in oxidation catalysis; oxidation of benzene to phenol by nutrous oxide. CATTECH 4:18–31

    CAS  Google Scholar 

  60. Pinkert D, Limberg C (2014) Iron silicates, iron-modulated zeolite catalysts, and molecular models thereof. Chem Eur J 20:9166–9175

    CAS  PubMed  Google Scholar 

  61. Panov GI, Sobolev VI, Kharitonov AS (1990) The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. J Mol Catal 61:85–97

    CAS  Google Scholar 

  62. Panov GI, Sheveleva GA, Kharitonov AS, Romannikov VN, Vostrikova LA (1992) Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites. Appl Catal Gen 82:31–36

    CAS  Google Scholar 

  63. Stöckmann M, Konietzni F, Notheis JU, Voss J, Keune W, Maier WF (2001) Selective oxidation of benzene to phenol in the liquid phase with amorphous microporous mixed oxides. Appl Catal Gen 208:343–358

    Google Scholar 

  64. Dubkov KA, Ovanesyan NS, Shteinman AA, Starokon EV, Panov GI (2002) Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J Catal 207:341–352

    CAS  Google Scholar 

  65. Starokon EV, Parfenov MV, Arzumanov SS, Pirutko LV, Stepanov AG, Panov GI (2013) Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J Catal 300:47–54

    CAS  Google Scholar 

  66. Parmon VN, Panov GI, Uriarte A, Noskov AS (2005) Nitrous oxide in oxidation chemistry and catalysis: application and production. Catal Today 100:115–131

    CAS  Google Scholar 

  67. Pirutko LV, Chernyavsky VS, Uriarte AK, Panov GI (2002) Oxidation of benzene to phenol by nitrous oxide: activity of iron in zeolite matrices of various composition. Appl Catal Gen 227:143–157

    CAS  Google Scholar 

  68. Pirutko LV, Chernyavsky VS, Starokon EV, Ivanov AS, Panov GI (2009) The role of α-sites in N2O decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol. Appl Catal B Environ 91:174–179

    CAS  Google Scholar 

  69. Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) Characterization of iron in zeolites by X-band and Q-band ESR, pulsed ESR, and UV–visible spectroscopies. J Am Chem Soc 116:6344–6353

    CAS  Google Scholar 

  70. Wang Y, Zhang Q, Shishido T, Takehira K (2002) Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J Catal 209:186–196

    CAS  Google Scholar 

  71. Marturano P, Drozdová L, Kogelbauer A, Prins R (2000) Fe/ZSM-5 prepared by sublimation of FeCl3: the structure of the Fe species as determined by IR, 27Al MAS NMR, and EXAFS spectroscopy. J Catal 192:236–247

    CAS  Google Scholar 

  72. Sun K, Fan F, Xia H, Feng Z, Li W-Y, Li C (2008) Framework Fe ions in Fe-ZSM-5 zeolite studied by UV resonance Raman spectroscopy and density functional theory calculations. J Phys Chem C 112:16036–16041

    CAS  Google Scholar 

  73. Morice JA, Rees LVC (1968) Mössbauer studies of 57Fe in zeolites. Trans Faraday Soc 64:1388–1395

    CAS  Google Scholar 

  74. Santhoshkumar M, Schwidder M, Grünert W, Bentrup U, Brückner A (2006) Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies. J Catal 239:173–186

    CAS  Google Scholar 

  75. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys 9:3483

    CAS  PubMed  Google Scholar 

  76. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello A, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G (1996) Structure and reactivity of framework and extraframework Iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J Catal 158:486–501

    CAS  Google Scholar 

  77. Pinkert D, Demeshko S, Schax F, Braun B, Meyer F, Limberg C (2013) Ein zweikerniges, molekulares Eisen(II)-silicat mit zwei quadratisch-planaren High-Spin-FeO4-Einheiten. Angew Chem 125:5260–5263

    Google Scholar 

  78. Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, Paulus W (2007) Infinite-layer iron oxide with a square-planar coordination. Nature 450:1062–1065

    CAS  PubMed  Google Scholar 

  79. Pabst A (1943) Crystal structure of gillespite, BaFeSi4O10. Am Mineral 28:372–390

    CAS  Google Scholar 

  80. Dixon E, Hayward MA (2010) The topotactic reduction of Sr3Fe2O5Cl3—square planar Fe(II) in an extended oxyhalide. Inorg Chem 49:9649–9654

    CAS  PubMed  Google Scholar 

  81. Wurzenberger X, Piotrowski H, Klüfers P (2011) Ein stabiler molekularer Ausschnitt aus seltenen Eisen(II)-Mineralen: der quadratisch-planare High-Spin-d6-FeIIO4-Chromophor. Angew Chem 123:5078–5082

    Google Scholar 

  82. Manicke N, Hoof S, Keck M, Feist M, Limberg C (2017) A Hexanuclear Iron(II) Layer with two square-planar FeO4 units spanned by tetrasiloxide ligands: mimicking of minerals and catalysts. Inorg Chem 56:8554–8561

    CAS  PubMed  Google Scholar 

  83. Pinkert D, Keck M, Tabrizi SG, Herwig C, Beckmann F, Braun-Cula B, Kaupp M, Limberg C (2017) A high-spin square planar iron(II)-siloxide and its tetrahedral allogon—structural and spectroscopic models of Fe-zeolite sites. Chem Commun 53:8081–8084

    CAS  Google Scholar 

  84. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels DB, Solomon EI (2016) The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536:317–321

    CAS  PubMed  Google Scholar 

  85. Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI (2018) Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem Rev 118:2718–2768

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Christian Limberg would like to thank all coworkers, who are mentioned in the references for their important contributions to the work described. We are also grateful to the DFG for funding within the frame of the cluster of excellence (UniCat, EXC 314), the CRC 1109, and the project LI 714/10-1, as well as support from the Humboldt-Universität zu Berlin and IRIS Adlershof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Limberg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yelin, S., Limberg, C. Molecular Structural Motifs and O2 Activation Inspired by Enzymes and Solid Catalysts. Catal Lett 150, 1–11 (2020). https://doi.org/10.1007/s10562-019-02918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02918-0

Keywords

Navigation