Skip to main content
Log in

Catalytic Role of Pd(II) Ions in Mg–Al Hydrotalcites for the Oxidation of Styrene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Pd(II) ions were introduced into Mg0.7Al0.3(OH)2(CO3)0.15·mH2O through the co-precipitation of the corresponding nitrate salts at a constant pH value. The presence of Pd in the brucite-like layers affects an increased surface area and decreased crystal domain of the Mg–Al hydrotalcite catalysts. Pd(II) ions may exist in both intra- and extra- brucite-like layers and exhibit different roles in the oxidation of styrene with t-BuOOH, depending on the amount of palladium. The insertion of Pd(II) into the hydrotalcite lattice has significantly improved the catalyst stability. The highest conversion of styrene is about 80% for the production of styrene oxide and benzaldehyde at low temperatures.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dusi M, Malliat T, Baiker A (2000) Epoxidation of functionalized olefins over solid catalysts. Catal Rev 42(1–2):213–278

    CAS  Google Scholar 

  2. Polyakov M, Schaffner B, Kruse D, Martin A, Knockritz A (2016) Epoxide and cyclic carbonate with diisononyl succinate backbone as phthalate-free plasticizers. Tetrahedron Lett 57:964–968

    CAS  Google Scholar 

  3. Tien Thao N, Huu Trung H (2014) Selective oxidation of styrene over Mg-Co-Al hydrotalcite like-catalysts using air as oxidant. Catal Commun 45:153–157

    Google Scholar 

  4. Liu J, Chen T, Yan X, Wang Z, Jian R, Jian P, Yuan E (2018) NiCo2O4 nanoneedle-assembled hierarchical microflowers for highly selective oxidation of styrene. Catal Commun 109:71–75

    CAS  Google Scholar 

  5. Muzart J (2011) Pd-catalyzed oxidation of alkynes. J Mol Catal A 338:7–17

    CAS  Google Scholar 

  6. Noh J-H, Patala R, Meijboom R (2016) Catalytic evaluation of dendrimer and reverse microemulsion template Pd and Pt nanoparticles for the selective oxidation of styrene using TBHP. Appl Catal A 514:253–266

    CAS  Google Scholar 

  7. Wang F, Zhang J, Liu C, Liu J (2015) Pd–palygorskite catalysts: preparation, characterization and catalytic performance for the oxidation of styrene. Appl Clay Sci 105–106:150–155

    Google Scholar 

  8. He X, Chen L, Zhou X, Ji H (2016) Recyclable Pd supported catalysts with low loading for efficient epoxidation of olefins at ambient conditions. Catal Commun 83:78–81

    CAS  Google Scholar 

  9. Song J, Zhang Z, Jiang T, Hu S, Li W, Xie Y, Han B (2008) Epoxidation of styrene to styrene oxide using carbon dioxide and hydrogen peroxide in ionic liquids. J Mol Catal A 279:235–238

    CAS  Google Scholar 

  10. Cardoso M, Silva AR, de Castro B, Freire C (2005) Styrene epoxidation catalysed by manganese(III) salen complex supported on activated carbons. Appl Catal A 285:110–118

    CAS  Google Scholar 

  11. Yu JQ, Corey EJ (2002) Diverse pathways for the palladium(II)-mediated oxidation of olefins bytert-butylhydroperoxide. Org Lett 4(16):2727–2730

    CAS  PubMed  Google Scholar 

  12. Liu J, Fang S, Jian R, Wu F, Jian P (2018) Silylated Pd/Ti-MCM-41 catalyst for the selective production of propylene oxide from the oxidation of propylene with cumene hydroperoxide. Powder Technol 329:19–24

    CAS  Google Scholar 

  13. Wang Q, Wang L, Mi Z (2005) Influence of Pt–Pd/TS-1 catalyst preparation on epoxidation of olefins with hydrogen peroxide. Catal Lett 103:161–164

    CAS  Google Scholar 

  14. Bussi J, Lopez A, Pena F, Timbal P, Paz D, Lorenzo D, Dellacasa E (2003) Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl Catal A 253:177–189

    CAS  Google Scholar 

  15. Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Yerga RMN, Behrens M (2012) Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J Catal 293:27–38

    CAS  Google Scholar 

  16. Tien Thao N, Kim Huyen LT (2015) Catalytic oxidation of styrene over Cu-doped hydrotalcites. Chem Eng J 279:840–850

    CAS  Google Scholar 

  17. Bukhtiyarova MV (2019) A review on effect of synthesis conditions on the formation of layered double hydroxides. J Solid State Chem 269:494–506

    CAS  Google Scholar 

  18. Nishimura S, Takagaki A, Ebitani K (2013) Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem 15:2026–2042

    CAS  Google Scholar 

  19. Mora M, Jimenez-Sanchidrian C, Ruiz J (2006) Heterogeneous Suzuki cross-coupling reactions over palladium/hydrotalcite catalysts. J Colloid Interface Sci 302:568–575

    CAS  PubMed  Google Scholar 

  20. Li L, Lia G, Yuana Y (2015) Mesoporous PdO/Pt/Al2O3 film produced by reverse-micro-emulsion and its application for methane micro-sensor. RSC Adv 5:4586–4591

    CAS  Google Scholar 

  21. Barrabes N, Frare A, Föttinger K, Urakawa A, Llorca J, Rupprechter G, Tichit D (2012) Pt-Cu bimetallic catalysts obtained from layered double hydroxides by an anion-exchange route. Appl Clay Sci 69:1–10

    CAS  Google Scholar 

  22. Christensen GL, Langell MA (2013) Characterization of copper palladium oxide solid solutions by X–ray diffraction, X–ray photoelectron spectroscopy, and Auger electron spectroscopy. J Phys Chem C 117:7039–7049

    CAS  Google Scholar 

  23. Priolkar KR, Bera P, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP (2002) Formation of Ce1-xPdxO2-δ Solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation. Chem Mater 14:2120–2128

    CAS  Google Scholar 

  24. Ling F, Anthony OC, Xiong Q, Luo M, Pan X, Jia L, Huang J, Sun D, Li Q (2016) PdO/LaCoO3 heterojunction photocatalysts for highly hydrogen production from formaldehyde aqueous solution under visible light. Int J Hydrogen Energy 41:6115–6122

    CAS  Google Scholar 

  25. Baylet A, Marecot P, Duprez D, Castellazzi P, Groppi G, Forzatti P (2011) In situ Raman andin situ XRD analysis of PdO reduction and Pdo oxidation supported onc-Al2O3catalyst under different atmospheres. Phys Chem Chem Phys 13:4607–4613

    CAS  PubMed  Google Scholar 

  26. Zhao Z, Elwood J, Carpenter MA (2015) Phonon anharmonicity of PdO studied by Raman spectrometry. J Phys Chem C 119:23094–23102

    CAS  Google Scholar 

  27. Costa VV, da Silva Rocha KA, Kozhevnikov IV, Gusevskaya EV (2010) Isomerization of styrene oxide to phenylacetaldehyde over supported phosphotungstic heteropoly acid. Appl Catal A 383:217–220

    CAS  Google Scholar 

  28. Zhang F, Zhao X, Feng C, Li B, Chen T, Lu W, Lei X, Sailong Xu (2011) Crystal-face-selective supporting of gold nanoparticles on layered double hydroxide as efficient catalyst for epoxidation of styrene. ACS Catal 1:232–237

    CAS  Google Scholar 

  29. Patil NS, Uphade BS, Jana P, Bharagava SK, Choudhary VR (2004) Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. J Catal 223:236–239

    CAS  Google Scholar 

  30. Adam F, Iqbal A (2011) The liquid phase oxidation of styrene with tungsten modified silica as a catalyst. Chem Eng J 171:1379–1386

    CAS  Google Scholar 

  31. Feng B, Hou Z, Wang X, Hu Y, Li H, Qiao Y (2009) Selective aerobic oxidation of styrene to benzaldehydecatalyzed by water-soluble palladium(II) complex in water. Green Chem 11:1446–1452

    CAS  Google Scholar 

  32. Masunga N, Doyle BP, Carleschi E, Meijboom R (2018) Excellent product selectivity towards 2-phenyl-acetaldehyde and styrene oxide using manganese oxide and cobalt oxide NPs for the selective oxidation of styrene. Appl Catal A 559:175–186

    CAS  Google Scholar 

  33. Tien Thao N, Duc Trung N, Van Long D (2016) Activity of molybdate-intercalated layered double hydroxides in the oxidation of styrene with air. Catal Lett 146(5):918–928

    Google Scholar 

  34. Liu J, Chen T, Jian P, Wang L, Yan X (2018) Hollow urchin-like NiO/NiCo2O4 heterostructures as highly efficient catalysts for selective oxidation of styrene. J Colloid Interface Sci 526:295–301

    CAS  PubMed  Google Scholar 

  35. Sharma S, Sinha S, Chand S (2012) Polymer anchored catalysts for oxidation of styrene using TBHP and molecular oxygen. Ind Eng Chem Res 51:8806–8814

    CAS  Google Scholar 

  36. Tien Thao NT, Kim Huyen LT (2019) Enhanced catalytic performance of Cr-inserted hydrotalcites in the liquid oxidation of styrene. J Ind Eng Chem 73:221–232

    Google Scholar 

  37. Gu B, Bai J, Yang W, Li Chunping (2019) Synthesis of ANA-zeolite-based Cu nanoparticles composite catalyst and its regularity in styrene oxidation. Microporous Mesoporous Mater 274:318–326

    CAS  Google Scholar 

  38. Liu C, Huang J, Sun D, Zhou Y, Jing X, Du M, Wang H, Li Q (2013) Anatase type extra-framework titanium in TS-1: a vital factor influencing the catalytic activity toward styrene epoxidation. Appl Catal A 459:1–7

    CAS  Google Scholar 

  39. Wang X, Zhang X, Wang Y, Liu H, Qiu J, Wang J, Han W, Yeung KL (2011) Performance of TS-1-coated structured packing materials for styrene oxidation reaction. ACS Catal 1:437–445

    CAS  Google Scholar 

  40. Valand J, Parekh H, Friedrich HB (2013) Mixed Cu–Ni–Co nano-metal oxides: a new class of catalysts for styrene oxidation. Catal Commun 40:149–153

    CAS  Google Scholar 

  41. Wang G, Zhang S, Huang Y, Kang F, Yang Z, Guo Y (2012) Styrene epoxidation over V-SBA-15 with alkaline-earth metal ion promotion under photo-assisted conditions. Appl Catal A 413–414:52–61

    Google Scholar 

  42. Prasad Neeli CK, Narani A, Marella RK, Rao KSR, Burri DR (2013) Selective benzyl oxidation of alkylaromatics over Cu/SBA-15 catalysts under solvent-free conditions. Catal Commun 39:5–9

    Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 104.05-2017.04. We would like to acknowledge the RoHan Project supported by German Academic Exchange Service (DAAD, No. 57315854) and the German Federal Ministry for Economic Cooperation and Development (BMZ) inside the framework “SDG Bilateral Graduate school program”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Tien Thao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thao, N.T., Huyen, L.T.K. & Köckritz, A. Catalytic Role of Pd(II) Ions in Mg–Al Hydrotalcites for the Oxidation of Styrene. Catal Lett 149, 3370–3383 (2019). https://doi.org/10.1007/s10562-019-02915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02915-3

Keywords

Navigation