Skip to main content
Log in

Magnetic Mesoporous Silica Nanocomposite Functionalized with Palladium Schiff Base Complex: Synthesis, Characterization, Catalytic Efficacy in the Suzuki–Miyaura Reaction and α-Amylase Immobilization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Magnetic mesoporous silica nanocomposite, Fe3O4-MCM-41, was functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAPS) and then condensed with 5,5′-methylene bis(salicylaldehyde), followed by N(4)-phenylthiosemicarbazide to produce a ONS Schiff base grafted nanocomposite. Finally, by adding palladium(II) acetate, the palladium Schiff base complex was immobilized on magnetic nanocomposite. The characterization of new nanocomposites was carried out by means of several techniques such as FT-IR, XRD, FE-SEM, HRTEM, EDS, BET, VSM, XPS, DRS and TGA. The new nanocatalyst, Fe3O4@MCM-41-SB-Pd, was used in synthesis of symmetrical and unsymmetrical biaryl compounds via the Suzuki–Miyaura cross-coupling of phenylboronic acid with aryl halides. This catalyst was easily recovered by applying an external magnetic field and reused for several times without significant loss of its catalytic activity. Also the ability of synthesized mesoporous nanocomposites for enzyme immobilization was investigated and results showed that they efficiently immobilized α-amylase enzyme.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. ALOthman Z (2012) Materials 5:2874

    CAS  PubMed Central  Google Scholar 

  2. Huang W, Zhang Y, Li D (2017) J Environ Manag 193:470

    CAS  Google Scholar 

  3. Cashin VB, Eldridge DS, Yu A, Zhao D (2018) Environ Sci 4:110

    CAS  Google Scholar 

  4. Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) ACS Nano 9:11023

    CAS  PubMed  Google Scholar 

  5. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Adv Drug Deliv Rev 60:1278

    PubMed  Google Scholar 

  6. Hasanzadeh M, Nahar AS, Hassanpour S, Shadjou N, Mokhtarzadeh A, Mohammadi J (2017) Enzyme Microb Technol 105:64

    CAS  PubMed  Google Scholar 

  7. Nabavi ZPS, Åkerman Br (2017) J Phys Chem B 121:2575

    Google Scholar 

  8. Zheng G, Zhao R, Xu A, Shen Z, Chen X, Shao J (2018) Eur J Pharmacol Sci 111:492

    CAS  Google Scholar 

  9. Lee C-H, Lin T-S, Mou C-Y (2009) Nano Today 4:165

    CAS  Google Scholar 

  10. De Vos DE, Dams M, Sels BF, Jacobs PA (2002) Chem Rev 102:3615

    PubMed  Google Scholar 

  11. Zucca P, Sanjust E (2014) Molecules 19:14139

    PubMed  PubMed Central  Google Scholar 

  12. Mirante F, Gomes N, Branco LC, Cunha-Silva L, Almeida PL, Pillinger M, Gago S, Granadeiro CM, Balula SS (2019) Microporous Mesoporous Mater 275:163

    CAS  Google Scholar 

  13. Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK (2015) RSC Adv 5:53381

    CAS  Google Scholar 

  14. Chiang YD, Dutta S, Chen CT, Huang YT, Lin KS, Wu JC, Suzuki N, Yamauchi Y, Wu KCW (2015) Chemsuschem 8:789

    CAS  PubMed  Google Scholar 

  15. Yang L, Peng C, Fang X, Cheng Z, Zhou Z (2019) Catal Commun 121:68

    CAS  Google Scholar 

  16. Nguyen-Huy C, Lee H, Lee J, Kwak JH, An K (2019) Appl Catal A 571:118

    CAS  Google Scholar 

  17. Pal N, Bhaumik A (2015) RSC Adv 5:24363

    CAS  Google Scholar 

  18. Hu J, Wu Q, Li K, Li W, Ma F, Zhang S, Su F, Guo Y, Wang Y (2010) Catal Commun 12:238

    CAS  Google Scholar 

  19. Gawande MB, Monga Y, Zboril R, Sharma R (2015) Coord Chem Rev 288:118

    CAS  Google Scholar 

  20. Xie W, Zang X (2016) Food Chem 194:1283

    CAS  PubMed  Google Scholar 

  21. Singh H, Iyengar N, Rajput P, Sinha AK (2019) Mater Res Bull 112:363

    CAS  Google Scholar 

  22. Rezaei S, Ghorbani-Choghamarani A, Badri R (2016) Appl Organomet Chem 30:985

    CAS  Google Scholar 

  23. Manjunatha K, Koley TS, Kandathil V, Dateer RB, Balakrishna G, Sasidhar B, Patil SA, Patil SA (2018) Appl Organomet Chem 32:e4266

    Google Scholar 

  24. Ghorbani-Choghamarani A, Ghasemi B, Safari Z, Azadi G (2015) Catal Commun 60:70

    CAS  Google Scholar 

  25. Azar ARJ, Safaei E, Mohebbi S (2015) Mater Res Bull 70:753

    Google Scholar 

  26. Dhara K, Sarkar K, Srimani D, Saha SK, Chattopadhyay P, Bhaumik A (2010) Dalton Trans 39:6395

    CAS  PubMed  Google Scholar 

  27. Rafiee F, Mehdizadeh N (2018) Catal Lett 1

  28. Jana S, Dutta B, Bera R, Koner S (2008) Inorg Chem 47:5512

    CAS  PubMed  Google Scholar 

  29. Kumari S, Layek S, Pathak DD (2017) New J Chem 41:5595

    Google Scholar 

  30. Tahmasbi L, Sedaghat T, Motamedi H, Kooti M (2018) J Solid State Chem 258:517

    CAS  Google Scholar 

  31. Pitzalis F, Monduzzi M, Salis A (2017) Microporous Mesoporous Mater 241:145

    CAS  Google Scholar 

  32. Liu LH, Shih YH, Liu WL, Lin CH, Huang HY (2017) Chem Sus Chem 10:1364

    Google Scholar 

  33. Ma X, Sánchez S (2017) Tetrahedron 73:4883

    CAS  Google Scholar 

  34. Kumar A, Park GD, Patel SKS, Kondaveeti S, Otari S, Anwar MZ, Kalia VC, Singh Y, Kim SC, Cho B-K, Sohn J-H, Kim DR, Kang YC, Lee J-K (2019) Chem Eng J 359:1252

    CAS  Google Scholar 

  35. Liu J, Liu Y, Jin D, Meng M, Jiang Y, Ni L, Liu Z (2019) Solid State Sci 89:15

    CAS  Google Scholar 

  36. Cacicedo ML, Manzo RM, Municoy S, Bonazza HL, Islan GA, Desimone M, Bellino M, Mammarella EJ, Castro GR (2019) Chapter 7—immobilized enzymes and their applications. In: Singh RS, Singhania RR, Pandey A, Larroche C (eds) Advances in enzyme technology, 169. Elsevier, New York

    Google Scholar 

  37. Marvel C, Tarköy N (1957) J Am Chem Soc 79:6000

    CAS  Google Scholar 

  38. Zhu J, He J, Du X, Lu R, Huang L, Ge X (2011) Appl Surf Sci 257:9056

    CAS  Google Scholar 

  39. Kooti M, Afshari M (2012) Mater Res Bull 47:3473

    CAS  Google Scholar 

  40. Wang Y, Li B, Zhang L, Li P, Wang L, Zhang J (2011) Langmuir 28:1657

    PubMed  Google Scholar 

  41. Lei B, Li B, Zhang H, Lu S, Zheng Z, Li W, Wang Y (2006) Adv Funct Mater 16:1883

    CAS  Google Scholar 

  42. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) J Am Chem Soc 130:28

    CAS  PubMed  Google Scholar 

  43. Wang Y, Li B, Zhang L, Song H (2013) Langmuir 29:1273

    CAS  PubMed  Google Scholar 

  44. Jang J, Lim H (2010) Microchem J 94:148

    CAS  Google Scholar 

  45. Wang P, Lu Q, Li J (2010) Mater Res Bull 45:129

    CAS  Google Scholar 

  46. Ghorbani-Vaghei R, Hemmati S, Veisi H (2014) J Mol Catal A 393:240

    CAS  Google Scholar 

  47. Zhang G, Wang P, Wei X (2013) Catal Lett 143:1188

    CAS  Google Scholar 

  48. Baran T (2019) Int J Biol Macromol 127:232

    CAS  PubMed  Google Scholar 

  49. Gogoi N, Bora U, Borah G, Gogoi PK (2017) Appl Organomet Chem 31:e3686

    Google Scholar 

  50. Kunfi A, May Z, Németh P, London G (2018) J Catal 361:84

    CAS  Google Scholar 

  51. Yuan L, Chen W, Hu J, Zhang JZ, Yang D (2013) Langmuir 29:734

    CAS  PubMed  Google Scholar 

  52. Yuan L, Tang Q, Yang D, Zhang JZ, Zhang F, Hu J (2011) J Phys Chem C 115:9926

    CAS  Google Scholar 

  53. Carniato F, Bisio C, Paul G, Gatti G, Bertinetti L, Coluccia S, Marchese L (2010) J Mater Chem 20:5504

    CAS  Google Scholar 

  54. Miyasaka K, Neimark AV, Terasaki O (2008) J Phys Chem C 113:791

    Google Scholar 

  55. Cai Y, Ling L, Li X, Chen M, Su L (2015) J Solid State Chem 226:179

    CAS  Google Scholar 

  56. Shen L, Wu Y, Ma W (2015) Spectrochim Acta A 138:348

    CAS  Google Scholar 

  57. Zhang D, Wang X, Qiao Z-A, Tang D, Liu Y, Huo Q (2010) J PhysChem C 114:12505

    CAS  Google Scholar 

  58. Hajjami M, Ghorbani F, Bakhti F (2014) Appl Catal A 470:303

    CAS  Google Scholar 

  59. Tang D, Zhang L, Zhang Y, Qiao Z-A, Liu Y, Huo Q (2012) J Colloid Interface Sci 369:338

    CAS  PubMed  Google Scholar 

  60. Liu C-C, Lin T-S, Chan SI, Mou C-Y (2015) J Catal 322:139

    CAS  Google Scholar 

  61. Tukhani M, Panahi F, Khalafi-Nezhad A (2017) ACS Sustain Chem Eng 6:1456

    Google Scholar 

  62. Firuzabadi FD, Asadi Z, Panahi F (2016) RSC Adv 6:101061

    Google Scholar 

  63. Sadhasivam V, Balasaravanan R, Siva A (2019) Appl Organomet Chem e4994

  64. Meng X, Zhang Z (2017) Appl Catal B 209:383

    CAS  Google Scholar 

  65. Islam SM, Roy AS, Mondal P, Salam N (2012) Appl Organomet Chem 26:625

    CAS  Google Scholar 

  66. Niakan M, Asadi Z, Masteri-Farahani M (2018) Colloids Surf A 551:117

    CAS  Google Scholar 

  67. Trivedi M, Singh G, Kumar A, Rath NP (2016) Inorg Chim Acta 449:1

    CAS  Google Scholar 

  68. Sun C, Sun K, Tang S (2018) Mater Chem Phys 207:181

    CAS  Google Scholar 

  69. Sarmah C, Sahu D, Das P (2012) Catal Today 198:197

    CAS  Google Scholar 

  70. Li W, Zhang B, Li X, Zhang H, Zhang Q (2013) Appl Catal A 459:65

    CAS  Google Scholar 

  71. Pourjavadi A, Motamedi A, Marvdashti Z, Hosseini SH (2017) Catal Commun 97:27

    CAS  Google Scholar 

  72. Veisi H, Najafi S, Hemmati S (2018) Int J Biol Macromol 113:186

    CAS  PubMed  Google Scholar 

  73. Hartmann M, Jung D (2010) J Mater Chem 20:844

    CAS  Google Scholar 

  74. Liu W, Wang L, Jiang R (2012) Top Catal 55:1146

    CAS  Google Scholar 

  75. Sheldon RA (2007) Adv Synth Catal 349:1289

    CAS  Google Scholar 

Download references

Acknowledgement

Support of this work by Shahid Chamran University of Ahvaz, Iran (Grant No. 1397) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Sedaghat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, A., Sedaghat, T., Azadi, R. et al. Magnetic Mesoporous Silica Nanocomposite Functionalized with Palladium Schiff Base Complex: Synthesis, Characterization, Catalytic Efficacy in the Suzuki–Miyaura Reaction and α-Amylase Immobilization. Catal Lett 150, 112–126 (2020). https://doi.org/10.1007/s10562-019-02913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02913-5

Keywords

Navigation