Skip to main content
Log in

Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A feasible approach was developed to quickly hydrolyze microcrystalline cellulose (MCC) into glucose using a new carbon-based solid catalyst (CSC). The catalysts possessed the structure of mesoporous carbon with weak acidic carboxylic and phenolic groups. 83.94% yield of glucose was achieved at 200 °C for 50 min using mixed ball milling of MCC and CSC. The catalysts showed excellent recyclability and catalytic activity after five cycles.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luterbacher JS, Alonso DM, Dumesic JA (2014) Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem 16:4816–4838

    CAS  Google Scholar 

  2. Rackemann DW, Doherty WOS (2011) The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Bior 5:198–214

    CAS  Google Scholar 

  3. Agarwal B, Kailasam K, Sangwan RS, Elumalai S (2018) Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: a review. Renew Sust Energy Rev 82:2408–2425

    CAS  Google Scholar 

  4. Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Renew Sust Energ Rev 6:1858–1867

    CAS  Google Scholar 

  5. Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A (2013) A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresour Technol 135:513–522

    CAS  PubMed  Google Scholar 

  6. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    CAS  Google Scholar 

  7. Pang Q, Wang LQ, Yang H, Jia LS, Pan XW, Qiu CC (2014) Cellulose-derived carbon bearing –Cl and –SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Adv 4:41212–41218

    CAS  Google Scholar 

  8. Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594

    CAS  Google Scholar 

  9. Tong DS, Xia X, Luo XP, Wu LM, Lin CX, Yu WH, Zhou CH, Zhong ZK (2013) Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts. Appl Clay Sci 74:147–153

    CAS  Google Scholar 

  10. Zhou LP, Liu Z, Shi MT, Du SS, Su YL, Yang XM, Xu J (2013) Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose. Carbohydr Polym 98:146–151

    CAS  PubMed  Google Scholar 

  11. Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    CAS  Google Scholar 

  12. Hu SL, Smith TJ, Lou WY, Zong MH (2014) Correction to efficient hydrolysis of cellulose over a novel sucralose-derived solid acid with cellulose-binding and catalytic sites. J Agric Food Chem 62:1905–1911

    CAS  PubMed  Google Scholar 

  13. Hu L, Lin L, Wu Z, Zhou SY, Liu SJ (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B: Environ 174–175:225–243

    Google Scholar 

  14. Ran S, Song XL, Sun RC, Jiang JX (2011) Effect of lignin content on enzymatic hydrolysis of furfural residues. BioResources 6:317–328

    Google Scholar 

  15. Kobayashi H, Yabushita M, Komanoya T, Hara K, Fukuoka A (2013) High-yielding one-pot synthesis of glucose from cellulose using simple activated carbons and trace hydrochloric acid. ACS Catal 3:581–587

    CAS  Google Scholar 

  16. Su J, Mo Q, Feng S, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22

    CAS  Google Scholar 

  17. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    CAS  Google Scholar 

  18. Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149

    CAS  Google Scholar 

  19. Deng AJ, Ren JL, Wang WJ, Li HL, Lin QX, Yan YH, Sun RC, Liu GL (2016) Production of xylo-sugars from corncob by oxalic acid-assisted ball milling and microwave-induced hydrothermal treatments. Ind Crop Prod 79:137–145

    CAS  Google Scholar 

  20. Zhu JD, Gan LH, Li BX, Xin Y (2017) Synthesis and characteristics of lignin-derived solid acid catalysts for microcrystalline cellulose hydrolysis. Korean J Chem Eng 34:110–117

    CAS  Google Scholar 

  21. Shrotri A, Kobayashi H, Fukuoka A (2016) Mechanochemical synthesis of a carboxylated carbon catalyst and its application in cellulose hydrolysis. ChemCatChem 8:1059–1064

    CAS  Google Scholar 

  22. Shrotri A, Kobayashi H, Fukuoka A (2016) Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose. ChemSusChem 9:1299–1303

    CAS  PubMed  Google Scholar 

  23. Cao LC, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong XN, Zhang SC, Ok YS, Kwon EE, Song H, Poon CS (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82

    CAS  PubMed  Google Scholar 

  24. Shen F, Guo TM, Bai CX, Qiu M, Qi XH (2018) Hydrolysis of cellulose with one-pot synthesized sulfonated carbonaceous solid acid. Fuel Process Technol 169:244–247

    CAS  Google Scholar 

  25. Cheng BG, Wang XH, Lin QX, Zhang X, Meng L, Sun RC, Xin FX, Ren JL (2018) New understandings of the relationship and initial formation mechanism for pseudo-lignin, humins, and acid-induced hydrothermal carbon. J Agric Food Chem 66:11981–11989

    CAS  PubMed  Google Scholar 

  26. Li CZ, Qian W, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182

    CAS  Google Scholar 

  27. Yang ZZ, Huang RL, Qi W, Tong LP, Su RX, He ZM (2015) Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chem Eng J 15:90–98

    Google Scholar 

  28. Li S, Pan XJ (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5:6889–6894

    Google Scholar 

  29. Sun BZ, Peng GG, Lian D, Xu AH, Li XX (2015) Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose. Bioresour Technol 196:454–458

    CAS  PubMed  Google Scholar 

  30. Pang JF, Wang AQ, Zheng MY, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937

    CAS  Google Scholar 

  31. Lin QX, Zhang CH, Wang XH, Cheng BG, Mai N, Ren JL (2018) Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catal Today 319:31–40

    Google Scholar 

  32. Fuente E, Menéndez JA, Díez MA, Suárez D, Montes-Morán MA (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107:6350–6359

    CAS  Google Scholar 

  33. Moreno-Castilla C, López-Ramón MV, Carrasco-Marı́n F (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38:1995–2001

    CAS  Google Scholar 

  34. Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190:122–132

    CAS  Google Scholar 

  35. Dinesh M, Pittman CU, Mark B, Fran S, Ben Javeed M, Steele PH, Alexandre-Franco MF, Vicente GS, Henry G (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interf Sci 310:57–73

    Google Scholar 

  36. Liu Z, Zhang FS, Wu J (2010) Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89:510–514

    CAS  Google Scholar 

  37. Jiang YJ, Li XT, Cao Q, Mu XD (2011) Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides. J Nanopart Res 13:463–469

    CAS  Google Scholar 

  38. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787

    CAS  PubMed  Google Scholar 

  39. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    CAS  PubMed  Google Scholar 

  40. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    CAS  Google Scholar 

  41. Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    CAS  Google Scholar 

  42. Scott KN (1972) Carbon-13 nuclear magnetic resonance of biologically important aromatic acids. I. Chemical shifts of benzoic acid and derivatives. J Am Chem Soc 94:8564–8568

    CAS  PubMed  Google Scholar 

  43. Holtman KM, Chang HM, Jameel H, Kadla JF (2006) Quantitative 13C NMR characterization of milled wood lignins isolated by different milling techniques. J Wood Chem Technol 26:21–34

    CAS  Google Scholar 

  44. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem 3:440–443

    CAS  PubMed  Google Scholar 

  45. Mission EGG, Quitain AT, Sasaki M, Kida T (2017) Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose. Green Chem 19:3831–3843

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Program for National Natural Science Foundation of China (Nos. 21576103 and 31700506), the Guangdong Program for Support of Top-notch Young Professionals (No. 2016TQ03Z585), Natural Science Foundation of Guangdong Province, China (No. 2017A030310550), and the Fundamental Research Funds for the Central Universities of SCUT (Nos. 2019PY17 and 2019PY13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junli Ren or Shijie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, X., Guo, K. et al. Efficient Microwave-Assisted Hydrolysis of Microcrystalline Cellulose into Glucose Using New Carbon-Based Solid Catalysts. Catal Lett 150, 138–149 (2020). https://doi.org/10.1007/s10562-019-02912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02912-6

Keywords

Navigation