Skip to main content
Log in

Ionic Liquid Dispersed Ti/SBA-15 for Double-Bond Cleavage Oxidation of α-Methylstyrene into Acetophenone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A composite material Ti/SIL was prepared by Ti(OC4H9)4 coordinating to imidazolium ionic liquid grafted on SBA-15 and characterized by FT-IR, XRD, TEM, XPS, NH3-TPD and N2 adsorption–desorption technique. The catalytic performance of the prepared Ti/SIL for solvent-free oxidation of α-methylstyrene (AMS) to acetophenone using H2O2 oxidant was evaluated, achieving high TOF (23.2 h−1). The adsorption behavior of AMS via interaction with Ti4+ and Si–O active sites on the catalyst surface was measured by in situ DRIFTS, 29Si CP MAS NMR spectroscopy and analyzed by DFT theoretical calculation. Based on these analysis results, the reaction mechanism, involving the activation, consecutive conversion of AMS and homolytic decomposition of H2O2 on the catalyst surface to generate the product was proposed.

Graphic Abstract

An interaction between Ti4+ and Si-OH active sites were found on the catalyst surface of TiO2 dispersed on imidazolium ionic liquid grafted SBA-15 by in-situ DRIFTS and 29 Si CP MAS NMR spectra analysis, which was responsible for the activation of AMS molecules. The generation of the surface active intermediate and homolytic cleavage of H2O2 molecules were well confirmed by DFT theoretical calculation. Based on these results, the reaction mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3

Similar content being viewed by others

References

  1. Das BK, Clark JH (2000) Chem Commun 7:605

    Article  Google Scholar 

  2. Tong J, Li W, Bo L, Wang H, Hu Y, Zhang Z, Mahboob A (2016) J Catal 344:474

    Article  CAS  Google Scholar 

  3. Thao NT, Huen LTK (2015) Chem Eng J 279:840

    Article  Google Scholar 

  4. Adam F, Iqbal A (2011) Chem Eng J 171:1379

    Article  CAS  Google Scholar 

  5. Zhang L, Hua Z, Dong X, Li L, Chen H, Shi J (2007) J Mol Catal A 268:155

    Article  CAS  Google Scholar 

  6. Farrag M (2016) J Mol Catal A 413:67

    Article  CAS  Google Scholar 

  7. Wu G, Wang Y, Wang L, Feng W, Shi H, Lin Y, Zhang T, Lin X, Wang S, Wu X, Yao P (2013) Chem Eng J 215–216:306

    Article  Google Scholar 

  8. Liu C, Huang J, Sun D, Zhou Y, Jing X, Du M, Wang H, Li Q (2013) Appl Catal A 459:1

    Article  CAS  Google Scholar 

  9. Eimer GA, Casuscelli SG, Ghione GE, Crivello ME, Herrero ER (2006) Appl Catal A 298:232

    Article  CAS  Google Scholar 

  10. Chen Y, Huang Y, Xiu J, Han X, Bao X (2004) Appl Catal A 273:185

    Article  CAS  Google Scholar 

  11. Roussel M, Mimoun H (1980) J Org Chem 45:5387

    Article  CAS  Google Scholar 

  12. Keith JA, Henry PM (2009) Angew Chem Int Ed 48:9038

    Article  CAS  Google Scholar 

  13. Wang X, Zhuang J, Peng Q, Li YA (2005) Nature 437:121

    Article  CAS  Google Scholar 

  14. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu JY, Li J, Zhang T (2011) Nat Chem 3:634

    Article  CAS  Google Scholar 

  15. Wu Y, Wang D, Li Y (2016) Sci China Mater 59:938

    Article  CAS  Google Scholar 

  16. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) Science 319:939

    Article  CAS  Google Scholar 

  17. Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y (2016) Angew Chem Int Ed 55:10800

    Article  CAS  Google Scholar 

  18. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024

    Article  CAS  Google Scholar 

  19. Cang R, Lu B, Li X, Niu R, Zhao J, Cai Q (2015) Chem Eng Sci 137:268

    Article  CAS  Google Scholar 

  20. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  21. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  23. Grimme SS (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  24. Hirshfeld FL (1977) Chim Acta 44:129

    Article  CAS  Google Scholar 

  25. Wei S, Li A, Liu J, Li Z, Chen W, Gong Y, Zhang Q, Cheong W, Wang Y, Zheng L, Xiao H, Chen C, Wang D, Peng Q, Gu L, Han X, Li J, Li Y (2018) Nat Nanotech 13:856

    Article  CAS  Google Scholar 

  26. Zhanpeisov NU, Anpo M (2004) J Am Chem Soc 126:9439

    Article  CAS  Google Scholar 

  27. Moretti G, Salvi AM, Guascito MR, Langerame F (2004) Surf Interface Anal 36:1402

    Article  CAS  Google Scholar 

  28. Grohmann I, Pilz W, Walther G, Kosslick H, Tuan VA (1994) Surf Interface Anal 22:403

    Article  CAS  Google Scholar 

  29. Li X, Lu B, Sun J, Wang X, Zhao J, Cai Q (2013) Catal Commun 39:115

    Article  Google Scholar 

  30. Sun Q, Niu R, Wang H, Lu B, Zhao J, Cai Q (2017) Micro Meso Mater 248:108

    Article  CAS  Google Scholar 

  31. Damin A, Bordiga S, Zecchina A (2002) J Chem Phys 117:226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We make a great acknowledgment for the financial support of this work by the National Natural Science Foundation of China (No. 21671050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxiang Zhao or Qinghai Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, H., Lu, B. et al. Ionic Liquid Dispersed Ti/SBA-15 for Double-Bond Cleavage Oxidation of α-Methylstyrene into Acetophenone. Catal Lett 149, 3491–3500 (2019). https://doi.org/10.1007/s10562-019-02911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02911-7

Keywords

Navigation