Skip to main content
Log in

Magnetic BaFe12O19/Al2O3: An Efficient Heterogeneous Lewis Acid Catalyst for the Synthesis of α-Aminophosphonates (Kabachnik–Fields Reaction)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The design and application of environmentally friendly catalysts to reduce the quantity of toxic wastes is critical for improving the chemical synthesis process. Therefore, BaFe12O19/Al2O3, a magnetic mesoporous nanocomposites, were designed synthesized and characterized using different techniques such as energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) adsorption method, and vibrating sample magnetometry (VSM). The prepared BaFe12O19/Al2O3 display a high surface area (1773.22 m2/g) with an average pore diameter of 3.946 nm from nitrogen sorption analysis. In addition, the synthesized nanocomposites prove to be an active heterogeneous Lewis acid catalyst for the solvent free synthesis of α-aminophosphonates at ambient temperature, through three-component reaction of aldehydes/ketones, amines and triethyl phosphite. The use of this catalyst results in an effortless magnetic recoverability and recyclability, high yield and short reaction time under solvent-free conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. Maung JP, Mallari TA, Girtsman LYWu, Rowley JA, Santiago NM, Brunelle AN, Berkman CE (2004) Bioorg Med Chem 12:4969–4979

    Article  CAS  Google Scholar 

  2. Christianson DW, Lipscomb WN (1988) J Am Chem Soc 110:5560–5565

    Article  CAS  Google Scholar 

  3. Moonen K, Laureyn I, Stevens CV (2004) Chem Rev 104:6177–6216

    Article  CAS  Google Scholar 

  4. Rodriguez CE, Lu H, Martinez AR, Hu Y, Brunelle A, Berkman CE (2001) J Enzym Inhib Med Chem 16:359–365

    CAS  Google Scholar 

  5. Sheridan RP (2002) J Chem Inform Comput Sci 42:103–108

    Article  CAS  Google Scholar 

  6. Rostamnia S, Xin H, Nouruzi N (2013) Microporous Mesoporous Mater 179:99–103

    Article  CAS  Google Scholar 

  7. Kafarski P, Górniak MG, Andrasiak I (2015) Curr. Green Chem 5:218–222

    Article  Google Scholar 

  8. Keglevich G, Bálint E (2012) Molecules 17:12821–12835

    Article  CAS  Google Scholar 

  9. Reddy MV, Dindulkar SD, Jeong YT (2011) Tetrahedron Lett 52:4764–4767

    Article  CAS  Google Scholar 

  10. Varalakshmi M, Srinivasulu D, Rajasekhar D, Raju CN, Sreevani S (2014) Phosphorus. Sulfur Silicon Relat Elem 189:106–112

    Article  CAS  Google Scholar 

  11. Essid I, Touil S (2017) Curr Org Synth 14(2017):272–278

    Article  CAS  Google Scholar 

  12. Farahani N, Akbari J (2017) Lett Org Chem 14:483–487

    Article  CAS  Google Scholar 

  13. da Silva CD, Oliveira AR, Rocha MP, Katla R, Botero ER, da Silva ÉC, Domingues NLC (2016) RSC Adv 6:27213–27219

    Article  Google Scholar 

  14. Trueba M, Trasatti SP (2005) Eur J Inorg Chem 2005:3393–3403

    Article  Google Scholar 

  15. Wilson K, Clark JH (2000) Pure Appl Chem 72:1313–1319

    Article  CAS  Google Scholar 

  16. Peymanfar R, Rahmanisaghieh M (2018) Mater Res Express 5:105012

    Article  Google Scholar 

  17. Jafari AA, Amini S, Tamaddon F (2013) JICS 10:677–684

    Article  CAS  Google Scholar 

  18. Quin LD (2000) A guide to organophosphorus chemistry. John Wiley & Sons, New Jersey

    Google Scholar 

  19. Peng H, Sun S, Hu Y, Xing R, Fang D (2015) Heteroat Chem 26:215–223

    Article  CAS  Google Scholar 

  20. Ghafuri H, Rashidizadeh A, Zand HRE (2016) RSC Adv 6:16046–16054

    Article  CAS  Google Scholar 

  21. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Tetrahedron 69:4708–4724

    Article  CAS  Google Scholar 

  22. Ranu BC, Hajra A, Jana U (1999) Org Lett 1:1141–1143

    Article  CAS  Google Scholar 

  23. Wang H, Deng T, Cai C (2014) J Fluor Chem 16:144–150

    Article  Google Scholar 

  24. Niu HY, Li HJ, Li JP, Huang Y, Mao RZ, Li DY, Qu GR, Guo HM (2011) Lett Org Chem 8:674–681

    Article  CAS  Google Scholar 

  25. Yadav J, Reddy B, Sreedhar P (2002) Green Chem 4:436–438

    Article  CAS  Google Scholar 

  26. Hosseini-Sarvari M (2008) Tetrahedron 64:5459–5466

    Article  CAS  Google Scholar 

  27. Kaboudin B, Nazari R (2001) Tetrahedron Lett 42:8211–8213

    Article  CAS  Google Scholar 

  28. Chinthaparthi RR, Bhatnagar I, Gangireddy CSR, Syama SC, Cirandur SR (2013) Arch Pharm 346:667–676

    Article  CAS  Google Scholar 

  29. Sobhani S, Falatooni ZM, Honarmand M (2014) RSC Adv 4(30):15797–15806

    Article  CAS  Google Scholar 

  30. Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Tetrahedron 69:1–17

    Article  Google Scholar 

  31. Jafari AA, Nazarpour M, Abdollahi-Alibeik M (2010) Heteroatom Chem 21:397–403

    Article  CAS  Google Scholar 

  32. Cherkasov RA, Galkin VI (1998) Russ Chem Rev 67:940–968

    CAS  Google Scholar 

  33. Galkina IV, Sobanov AA, Galkin VI, Cherkasov RA (1998) Russ J Gen Chem 68:1465–1468

    Google Scholar 

  34. Galkina IV, Galkin VI, Cherkasov RA (1998) Russ J Gen Chem 68:1402–1407

    CAS  Google Scholar 

  35. Dimukhametov MN, Bayandina EV, Davydova EY, Gubaidullin AT, Litvinov IA, Alfonsov VA (2003) Mendeleev Commun 13:150–151

    Article  Google Scholar 

  36. Matveeva ED, Zefirov NS (2008) Dokl Akad Nauk SSSR 420:492–495

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Research Council of the Iran University of Science and Technology, Tehran, IRAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrzad Javanshir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piri, T., Peymanfar, R., Javanshir, S. et al. Magnetic BaFe12O19/Al2O3: An Efficient Heterogeneous Lewis Acid Catalyst for the Synthesis of α-Aminophosphonates (Kabachnik–Fields Reaction). Catal Lett 149, 3384–3394 (2019). https://doi.org/10.1007/s10562-019-02910-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02910-8

Keywords

Navigation