Skip to main content
Log in

Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Synthesis of light hydrocarbons from synthesis gas using bifunctional catalysts consisting of CuO–ZnO–Al2O3 methanol synthesis catalysts and SAPO-5 were investigated in a fixed bed reactor. The operating results showed that both the temperature and the ratio of CZA/SAPO-5 influenced the CO conversion and the selectivity of the catalysts. The effects of different dehydration component such as HZSM-5, HMOR and SAPO-5 and subsequently the impact of the zeolite acidity on the catalytic performance were also investigated. Experimental results indicated that zeolites in bifunctional catalysts played the crucial role for the distribution of hydrocarbons, and SAPO-5 was superior to the other zeolites in terms of better conversion and C3–C5 selectivity due to its suitable topology and proper acidic property. The efficiency of the CZA/SAPO-5 catalysts was found to be directly proportional to the Brönsted acid sites density of the zeolite and Brönsted acid sites are the likely zeolite active sites for DME dehydration. High time–space yield (461.6 mg mL−1 h−1) and high selectivity (88.1%) of light hydrocarbons (C3–C5) could be achieved on the CZA/SAPO-5-0.4 catalyst at 290 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang S, Xiao L, Yang S, Kraslawski A, Man Y, Qian Y (2014) ACS Sustain Chem Eng 2:80. https://doi.org/10.1021/sc400336e

    Article  CAS  Google Scholar 

  2. Zhang S, Li D, Liu Y, Zhang Y, Wu Q (2019) Catal Lett 149:1486. https://doi.org/10.1007/s10562-019-02775-x

    Article  CAS  Google Scholar 

  3. Cheng K, Zhang L, Kang J, Peng X, Zhang Q, Wang Y (2015) Chem Eur J 21:1928. https://doi.org/10.1002/chem.201405277

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Gong K, Miao D, Jiao F, Pan X, Meng X, Xiao F, Bao X (2019) J Energy Chem 35:44. https://doi.org/10.1016/j.jechem.2018.10.008

    Article  Google Scholar 

  5. Kondratenko EV, Peppel T, Seeburg D, Kondratenko VA, Kalevaru N, Martin A, Wohlrab S (2017) Catal Sci Technol 7:366. https://doi.org/10.1039/C6CY01879C

    Article  CAS  Google Scholar 

  6. Batamack PTD, Mathew T, Prakash GKS (2017) J Am Chem Soc 139:18078. https://doi.org/10.1021/jacs.7b10725

    Article  CAS  PubMed  Google Scholar 

  7. Alayat A, Mcllroy DN, McDonald AG (2018) Fuel Process Technol 169:132. https://doi.org/10.1016/j.fuproc.2017.09.011

    Article  CAS  Google Scholar 

  8. Nie C, Zhan H, Ma H, Qian W, Sun Q, Ying W (2019) Catal Lett 149:1375. https://doi.org/10.1007/s10562-019-02700-2

    Article  CAS  Google Scholar 

  9. Xue Y, Ge H, Chen Z, Zhai Y, Zhang J, Sun J, Abbas M, Lin K, Zhao W, Chen J (2018) J Catal 358:237. https://doi.org/10.1016/j.jcat.2017.12.017

    Article  CAS  Google Scholar 

  10. Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S, Qiao M, Zhang X, Zong B (2014) Nat Commun 5:5783. https://doi.org/10.1038/ncomms6783

    Article  CAS  PubMed  Google Scholar 

  11. Hibbitts D, Dybeck E, Lawlor T, Neurock M, Iglesia E (2016) J Catal 337:91. https://doi.org/10.1016/j.jcat.2016.01.010

    Article  CAS  Google Scholar 

  12. Dry ME (2002) Catal Today 71:227. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  13. Wang C, Yang J, Sun Y, Li Q, Zheng Y, Hu YH (2019) Fuel 244:395. https://doi.org/10.1016/j.fuel.2019.02.024

    Article  CAS  Google Scholar 

  14. Zhao B, Zhai P, Wang P, Li J, Li T, Peng M, Zhao M, Hu G, Yang Y, Li YW, Zhang Q, Fan W, Ma D (2017) Chem 3:323. https://doi.org/10.1016/j.chempr.2017.06.017

    Article  CAS  Google Scholar 

  15. Harmel J, Peres L, Estrader M, Berliet A, Maury S, Fécant A, Chaudret B, Serp P, Soulantica K (2018) Angew Chem Int Ed 57:10579. https://doi.org/10.1002/anie.201804932

    Article  CAS  Google Scholar 

  16. Li J, Pan X, Bao X (2015) Chin J Catal 36:1131. https://doi.org/10.1016/S1872-2067(14)60297-7

    Article  CAS  Google Scholar 

  17. Chinchen GC, Denny PJ, Parker DG, Spencer MS, Whan DA (1987) Appl Catal 30:333. https://doi.org/10.1016/S0166-9834(00)84123-8

    Article  CAS  Google Scholar 

  18. Deng X, Liu Y, Huang W (2018) J Energy Chem 27:319. https://doi.org/10.1016/j.jechem.2017.10.007

    Article  Google Scholar 

  19. Kim J-H, Park MJ, Kim SJ, Joo O-S, Jung K-D (2004) Appl Catal A 264:37. https://doi.org/10.1016/j.apcata.2003.12.058

    Article  CAS  Google Scholar 

  20. Kuld S, Thorhauge M, Falsig H, Elkjær CF, Helveg S, Chorkendorff I, Sehested J (2016) Science 352:969. https://doi.org/10.1126/science.aaf0718

    Article  CAS  PubMed  Google Scholar 

  21. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) Science 336:893. https://doi.org/10.1126/science.1219831

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Xu Y, Cheng D-G, Chen Y, Chen F, Lu X, Huang Y, Ni S (2015) J Chem Technol Biotechnol 90:415. https://doi.org/10.1002/jctb.4309

    Article  CAS  Google Scholar 

  23. Nieskens DLS, Ciftci A, Groenendijk PE, Wielemaker MF, Malek A (2017) Ind Eng Chem Res 56:2722. https://doi.org/10.1021/acs.iecr.6b04643

    Article  CAS  Google Scholar 

  24. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2005) Catal Lett 102:51. https://doi.org/10.1007/s10562-005-5202-x

    Article  CAS  Google Scholar 

  25. Ge Q, Lian Y, Yuan X, Li X, Fujimoto K (2008) Catal Commun 9:256. https://doi.org/10.1016/j.catcom.2007.06.011

    Article  CAS  Google Scholar 

  26. Lu P, Shen D, Cheng S, Hondo E, Chizema LG, Wang C, Gai X, Lu C, Yang R (2018) Fuel 223:157. https://doi.org/10.1016/j.fuel.2018.02.159

    Article  CAS  Google Scholar 

  27. Ma X, Ge Q, Ma J, Xu H (2013) Fuel Process Technol 109:1. https://doi.org/10.1016/j.fuproc.2013.01.002

    Article  CAS  Google Scholar 

  28. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K (2004) Fuel Process Technol 85:1139. https://doi.org/10.1016/j.fuproc.2003.10.016

    Article  CAS  Google Scholar 

  29. Li C, Yuan X, Fujimoto K (2014) Appl Catal A 475:155. https://doi.org/10.1016/j.apcata.2014.01.025

    Article  CAS  Google Scholar 

  30. Ereña J, Arandes JM, Bilbao J, Olazar M, de Lasa HI (1999) J Chem Technol Biotechnol 72:190. https://doi.org/10.1002/(SICI)1097-4660(199806)72:2%3c190:AID-JCTB895%3e3.0.CO;2-8

    Article  Google Scholar 

  31. Mysov VM, Reshetnikov SI, Stepanov VG, Ione KG (2005) Chem Eng J 107:63. https://doi.org/10.1016/j.cej.2004.12.011

    Article  CAS  Google Scholar 

  32. Dagle RA, Lizarazo-Adarme JA, Lebarbier Dagle V, Gray MJ, White JF, King DL, Palo DR (2014) Fuel Process Technol 123:65. https://doi.org/10.1016/j.fuproc.2014.01.041

    Article  CAS  Google Scholar 

  33. Lorenz E, Wehling P, Schlereth M, Kraushaar-Czarnetzki B (2016) Catal Today 275:183. https://doi.org/10.1016/j.cattod.2016.03.004

    Article  CAS  Google Scholar 

  34. Flores JH, da Silva MIP (2016) Catal Lett 146:1505. https://doi.org/10.1007/s10562-016-1771-0

    Article  CAS  Google Scholar 

  35. Haw JF, Song W, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317. https://doi.org/10.1021/ar020006o

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Ma X, Ge Q, Xu H (2015) Catal Sci Technol 5:1847. https://doi.org/10.1039/C4CY01494D

    Article  CAS  Google Scholar 

  37. Cheng K, Zhou W, Kang J, He S, Shi S, Zhang Q, Pan Y, Wen W, Wang Y (2017) Chem 3:334. https://doi.org/10.1016/j.chempr.2017.05.007

    Article  CAS  Google Scholar 

  38. Gayubo AG, Benito PL, Aguayo AT, Olazar M, Bilbao J (1996) J Chem Technol Biotechnol 65:186. https://doi.org/10.1002/(SICI)1097-4660(199602)65:2%3c186:AID-JCTB401%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  39. Wang L, Guo C, Yan S, Huang X, Li Q (2003) Micropor Mesopor Mater 64:63. https://doi.org/10.1016/S1387-1811(03)00482-7

    Article  CAS  Google Scholar 

  40. Guisnet M, Ayrault P, Datka J (1997) Pol J Chem 71:1455

    CAS  Google Scholar 

  41. van Bennekom JG, Venderbosch RH, Winkelman JGM, Wilbers E, Assink D, Lemmens KPJ, Heeres HJ (2013) Chem Eng Sci 87:204. https://doi.org/10.1016/j.ces.2012.10.013

    Article  CAS  Google Scholar 

  42. García-Trenco A, Martínez A (2012) Appl Catal A 411–412:170. https://doi.org/10.1016/j.apcata.2011.10.036

    Article  CAS  Google Scholar 

  43. Yuen L-T, Zones SI, Harris TV, Gallegos EJ (1994) Micropor Mater 2:105. https://doi.org/10.1016/0927-6513(93)E0039-J

    Article  CAS  Google Scholar 

  44. Westgård Erichsen M, Svelle S, Olsbye U (2013) J Catal 298:94. https://doi.org/10.1016/j.jcat.2012.11.004

    Article  CAS  Google Scholar 

  45. Westgård Erichsen M, Svelle S, Olsbye U (2013) Catal Today 215:216. https://doi.org/10.1016/j.cattod.2013.03.017

    Article  CAS  Google Scholar 

  46. Lebarbier VM, Dagle RA, Kovarik L, Lizarazo-Adarme JA, King DL, Palo DR (2012) Catal Sci Technol 2:2116. https://doi.org/10.1039/C2CY20315D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2018M642769) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beibei Gao or Yunlai Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Lu, T., Yang, M. et al. Enhanced Catalytic Performance of CuO–ZnO–Al2O3/SAPO-5 Bifunctional Catalysts for Direct Conversion of Syngas to Light Hydrocarbons and Insights into the Role of Zeolite Acidity. Catal Lett 149, 3338–3348 (2019). https://doi.org/10.1007/s10562-019-02901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02901-9

Keywords

Navigation