Skip to main content
Log in

SO2 Resistance of Mn–Ce Catalysts for Lean Methane Combustion: Effect of the Preparation Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Various catalysts were synthesized by the redox-precipitation (RP) and co-precipitation (CP) methods, and SO2 resistance of the catalysts for lean methane combustion was furtherly investigated. The catalysts before and after the reaction were characterized by XRD, XPS, SEM, FTIR, and H2-TPR. Under the circumstance of 80 ppm SO2, the methane conversion of MnCe-RP reduced by 1.08% within 20 h, much more excellent SO2 resistance than MnCe-CP (reduced by 62.45%). The excellent SO2 resistance of MnCe-RP was due to the excellent morphology, the redox-potential and the SO2 uptake of KxMn8O16 in the bulk and on the surface, oxidizing SO2 to sulfides, protecting the downstream catalyst. And the various sulfates were detected by X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FT-IR), and reduced the activating sites of the catalysts. This work provided a general strategy to enhance SO2 resistance of the catalyst system for lean methane catalytic combustion, utilizing KxMn8O16 to remove SO2 and free from the poison of the downstream catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang B, Albarracín Suazo S, Pagán Torres Y, Nikolla E (2017) Catal Today 285:147–158. https://doi.org/10.1016/j.cattod.2017.01.023

    Article  CAS  Google Scholar 

  2. Miller SM, Michalak AM, Detmers RG, Hasekamp OP, Bruhwiler LMP, Schwietzke S (2019) Nat Commun 10:303–310

    Article  Google Scholar 

  3. Su S, Agnew J (2006) Fuel 85(9):1201–1210. https://doi.org/10.1016/j.fuel.2005.11.010

    Article  CAS  Google Scholar 

  4. Huang Q, Li W, Lei Y, Guan S, Zheng X, Pan Y, Wen W, Zhu J, Zhang H, Lin Q (2018) Catal Lett 148(9):2799–2811. https://doi.org/10.1007/s10562-018-2397-1

    Article  CAS  Google Scholar 

  5. Lei Y, Li W, Liu Q, Lin Q, Zheng X, Huang Q, Guan S, Wang X, Wang C, Li F (2018) Fuel 233:10–20. https://doi.org/10.1016/j.fuel.2018.06.035

    Article  CAS  Google Scholar 

  6. Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y (2012) Chem Eng Sci 76:120–128. https://doi.org/10.1016/j.ces.2012.04.012

    Article  CAS  Google Scholar 

  7. Arena F, Trunfio G, Negro J, Spadaro L (2008) Appl Catal B-Environ 85(1–2):40–47. https://doi.org/10.1016/j.apcatb.2008.06.020

    Article  CAS  Google Scholar 

  8. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Inorg Chim Acta 431:101–109. https://doi.org/10.1016/j.ica.2014.12.017

    Article  CAS  Google Scholar 

  9. Grasselli RK (1999) Catal Today 49(1–3):141–153. https://doi.org/10.1016/S0920-5861(98)00418-0

    Article  CAS  Google Scholar 

  10. Cui M, Li Y, Wang X, Wang J, Shen M (2013) J Rare Earth 31(6):572–576. https://doi.org/10.1016/S1002-0721(12)60322-6

    Article  CAS  Google Scholar 

  11. Zhong L, Li X, Fang Q, Yu S, Xu H, Zhang C, Chen G (2019) J Fuel Chem Technol 47(3):378–384

    CAS  Google Scholar 

  12. Zhong L, Fang Q, Li X, Li Q, Zhang C, Chen G (2019) Appl Catal A-Gen 579:151–158. https://doi.org/10.1016/j.apcata.2019.04.013

    Article  CAS  Google Scholar 

  13. Yang Z, Liu J, Zhang L, Zheng S, Guo M, Yan Y (2014) RSC Adv 4(74):39394. https://doi.org/10.1039/C4RA05334F

    Article  CAS  Google Scholar 

  14. Monai M, Montini T, Melchionna M, Duchoň T, Kúš P, Chen C, Tsud N, Nasi L, Prince KC, Veltruská K, Matolín V, Khader MM, Gorte RJ, Fornasiero P (2017) Appl Catal B-Environ 202:72–83. https://doi.org/10.1016/j.apcatb.2016.09.016

    Article  CAS  Google Scholar 

  15. Ordóñez S, Paredes JR, Díez FV (2008) Appl Catal A-Gen 341(1–2):174–180. https://doi.org/10.1016/j.apcata.2008.02.042

    Article  CAS  Google Scholar 

  16. Zhang-Steenwinkel Y, Castricum HL, Beckers J, Eiser E, Bliek A (2004) J Catal 221(2):523–531. https://doi.org/10.1016/j.jcat.2003.09.016

    Article  CAS  Google Scholar 

  17. Machida M, Eguchi K, Arai H (1989) J Catal 120(2):377–386. https://doi.org/10.1016/0021-9517(89)90277-7

    Article  CAS  Google Scholar 

  18. Li W, Lin Y, Zhang Y (2003) Catal Today 83(1):239–245. https://doi.org/10.1016/S0920-5861(03)00244-X

    Article  CAS  Google Scholar 

  19. Zi X, Liu L, Xue B, Dai H, He H (2011) Catal Today 175(1):223–230. https://doi.org/10.1016/j.cattod.2011.03.039

    Article  CAS  Google Scholar 

  20. Xu H, Yan N, Qu Z, Liu W, Mei J, Huang W, Zhao S (2017) Environ Sci Technol 51(16):8879–8892. https://doi.org/10.1021/acs.est.6b06079

    Article  CAS  PubMed  Google Scholar 

  21. Arena F, Trunfio G, Negro J, Fazio B, Spadaro L (2007) Chem Mater 19(9):2269–2276. https://doi.org/10.1021/cm070198n

    Article  CAS  Google Scholar 

  22. Fiuk MM, Adamski A (2015) Catal Today 257:131–135. https://doi.org/10.1016/j.cattod.2015.01.029

    Article  CAS  Google Scholar 

  23. Urdă A, Popescu I, Cacciaguerra T, Tanchoux N, Tichit D, Marcu I-C (2013) Appl Catal A-Gen 464–465:20–27. https://doi.org/10.1016/j.apcata.2013.05.012

    Article  CAS  Google Scholar 

  24. Li S, Song P, Zhang J, He X, Xie Y, Zhang Y, Wang R, Li Z, Zhu H (2018) J Fuel Chem Technol 46(5):615–624

    CAS  Google Scholar 

  25. Liu L, Shi JJ, Zhang XJ, Liu JZ (2015) J Chem-NY. https://doi.org/10.1155/2015/254750

    Article  Google Scholar 

  26. Shi LM, Chu W, Qu FF, Hu JY, Li MM (2008) J Rare Earth 26(6):836–840. https://doi.org/10.1016/S1002-0721(09)60017-X

    Article  Google Scholar 

  27. Zhang H, Yang W, Li D, Wang X (2009) React Kinet Catal L 97(2):263–268. https://doi.org/10.1007/s11144-009-0024-2

    Article  CAS  Google Scholar 

  28. Xu J, Li P, Song X, He C, Yu J, Han Y (2010) J Phys Chem Lett 1(10):1648–1654. https://doi.org/10.1021/jz1004522

    Article  CAS  Google Scholar 

  29. Liu C, Yu J, Jiang Z, Tao Y, Hao Z, He X (2007) Chin J Inorg Chem 23(2):217–224

    Google Scholar 

  30. Leong ZY, Yang HY (2019) ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.8b20880

    Article  PubMed  Google Scholar 

  31. Yang L, Jiang X, Yang ZS, Jiang WJ (2015) Ind Eng Chem Res 54(5):1689–1696. https://doi.org/10.1021/ie503729a

    Article  CAS  Google Scholar 

  32. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Appl Surf Sci 257(7):2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  33. Poyraz AS, Huang J, Pelliccione CJ, Tong X, Cheng S, Wu L, Zhu Y, Marschilok AC, keuchi KJ, Takeuchi ES (2017) J Mater Chem A 5:16914–16928. https://doi.org/10.1039/C7TA03476H

    Article  CAS  Google Scholar 

  34. Poyraz AS, Huang JP, Cheng SB, Bock DC, Wu LJ, Zhu YM, Marschilok AC, Takeuchi KJ, Takeuchi ES (2016) Green Chem 18(11):3414–3421. https://doi.org/10.1039/C6GC00438E

    Article  CAS  Google Scholar 

  35. Yu Q, Wang C, Li XY, Li Z, Wang L, Zhang Q, Wu GL, Li ZC (2019) Fuel 239:1240–1245. https://doi.org/10.1016/j.fuel.2018.11.094

    Article  Google Scholar 

  36. Huang X, Zhao G, Chang Y, Wang G, Irvine JTS (2018) Appl Surf Sci 440:20–28. https://doi.org/10.1016/j.apsusc.2017.12.197

    Article  CAS  Google Scholar 

  37. Chen L, Niu X, Li Z, Dong Y, Zhang Z, Yuan F, Zhu Y (2016) Catal Commun 85:48–51. https://doi.org/10.1016/j.catcom.2016.07.013

    Article  CAS  Google Scholar 

  38. Zhang F, Tian G, Wang H, Wang H, Zhang C, Cui Y, Huang J, Shu Y (2016) Chem Res Chin Univ 32(3):461–467. https://doi.org/10.1007/s40242-016-5374-5

    Article  CAS  Google Scholar 

  39. Zhang Z, Huang J, Xia H, Dai Q, Gu Y, Lao Y, Wang X (2018) J Catal 360:277–289. https://doi.org/10.1016/j.jcat.2017.11.024

    Article  CAS  Google Scholar 

  40. Yu J, Chen Z, Zeng L, Ma Y, Feng Z, Wu Y, Lin H, Zhao L, He Y (2018) Sol Energy Mater Sol Cells 179:45–56. https://doi.org/10.1016/j.solmat.2018.01.043

    Article  CAS  Google Scholar 

  41. Naumkin VA, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray Photoelectron Spectroscopy Database. National Institute of Standards and Technology, NIST Standard Reference Database

  42. Li W, Zhang C, Li X, Tan P, Zhou A, Fang Q, Chen G (2018) Chin J Catal 39(10):1653–1663. https://doi.org/10.1016/S1872-2067(18)63099-2

    Article  CAS  Google Scholar 

  43. Han Y-F, Chen L, Ramesh K, Widjaja E, Chilukoti S, Surjami IK, Chen J (2008) J Catal 253(2):261–268. https://doi.org/10.1016/j.jcat.2007.11.010

    Article  CAS  Google Scholar 

  44. Riccardi CS, Lima RC, dos Santos ML, Bueno PR, Varela JA, Longo E (2009) Solid State Ion 180(2–3):288–291. https://doi.org/10.1016/j.ssi.2008.11.016

    Article  CAS  Google Scholar 

  45. Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60(3):689–700. https://doi.org/10.1016/S1386-1425(03)00279-8

    Article  CAS  Google Scholar 

  46. Aghazadeh M, Ghannadi Maragheh M, Ganjali MR, Norouzi P (2017) Inorg Nano-Met Chem 47(7):1085–1089. https://doi.org/10.1080/24701556.2017.1284092

    Article  CAS  Google Scholar 

  47. Alonso L, Palacios JM, Garcia E, Moliner R (2000) Fuel Process Technol 62:31–44. https://doi.org/10.1016/S0378-3820(99)00063-6

    Article  CAS  Google Scholar 

  48. Chang H, Chen X, Li J, Ma L, Wang C, Liu C, Schwank JW, Hao J (2013) Environ Sci Technol 47(10):5294–5301. https://doi.org/10.1021/es304732h

    Article  CAS  PubMed  Google Scholar 

  49. Wasalathanthri ND, Poyraz AS, Biswas S, Meng Y, Kuo C-H, Kriz DA, Suib SL (2015) J Phys Chem C 119(3):1473–1482. https://doi.org/10.1021/jp5108558

    Article  CAS  Google Scholar 

  50. Zhang CM, Pang X, Wang YZ (2018) Acta Chim Sinica 76(2):133–137. https://doi.org/10.6023/A17090418

    Article  CAS  Google Scholar 

  51. Liu G, Sun L, Luo W, Yang Y, Liu J, Wang F, Guild CJ (2018) Mol Catal 458:9–18. https://doi.org/10.1016/j.mcat.2018.07.022

    Article  CAS  Google Scholar 

  52. Xingyi W, Qian K, Dao L (2009) Appl Catal B-Environ 86:166–175. https://doi.org/10.1016/j.apcatb.2008.08.009

    Article  CAS  Google Scholar 

  53. Li L, King DL (2005) Ind Eng Chem Res 44(1):168–177. https://doi.org/10.1021/ie049111n

    Article  CAS  Google Scholar 

  54. Vasconcellos CM, Gonçalves MLA, Pereira MM, Carvalho NMF (2015) Appl Catal A-Gen 498:69–75. https://doi.org/10.1016/j.apcata.2015.01.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51676076), the National Key Research and Development Program of China (No. 2018YFB0605105), and the Research and Development Fund of SKLCC (FSKLCC1805); the technical support from the Analytical and Testing Center at the Huazhong University of Science and Technology is greatly appreciated. Authors acknowledge Dr. Rongxian Bai and Prof. Haiyan Mou for help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyan Fang or Gang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Fang, Q., Li, X. et al. SO2 Resistance of Mn–Ce Catalysts for Lean Methane Combustion: Effect of the Preparation Method. Catal Lett 149, 3268–3278 (2019). https://doi.org/10.1007/s10562-019-02896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02896-3

Keywords

Navigation