Advertisement

Influence of Tandem Catalysis and Optimised Parameters on Syngas-Dimethyl Ether Co-fed Process for Ethanol Direct Synthesis in a Dual Bed Reactor

  • Peng LuEmail author
  • Emmerson Hondo
  • Linet Gapu Chizema
  • Chengxue Lu
  • Yongfei Mei
  • Mingliang Tong
  • Chuang Xing
  • Ruiqin Yang
Article
  • 32 Downloads

Abstract

Ethanol use mainly as an alternative green fuel has attracted global attention, hence need for the development of more improved synthesis pathways. In this work, we proposed an in situ direct ethanol synthesis pathway, where dimethyl ether (DME) was co-fed with syngas (CO + H2) over a combination of metal impregnated zeolite (Cu-MOR) and ternary oxide CuO/ZnO/Al2O3 (CZA) catalysts, disjointly packed in a dual bed reactor. The route first transformed DME into an intermediate ester (methyl acetate) by carbonylation reaction on the upper modified zeolite catalyst, followed by hydrogenation of the intermediate ester into ethanol on the lower CZA catalyst. Dimethyl ether conversion reached 75.72% with an ethanol selectivity of 48.05% under Cu loading amount of 13 wt% of zeolite support.

Graphic Abstract

Keywords

Carbonylation Cu-MOR catalyst Dimethyl ether Ethanol Tandem reaction 

Notes

Acknowledgements

This research is financially supported by Zhejiang Province Natural Science Foundation (LY19B060001, LY17B060002).

Compliance with ethical standards

Conflict of interest

There are no conflict of interests.

Supplementary material

10562_2019_2890_MOESM1_ESM.docx (302 kb)
Supplementary material 1 (DOCX 302 kb)

References

  1. 1.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303Google Scholar
  2. 2.
    Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156(2):497–511Google Scholar
  3. 3.
    Albers SC, Berklund AM, Graff GD (2016) The rise and fall of innovation in biofuels. Nat Biotechnol 34(8):814–821Google Scholar
  4. 4.
    van Hal JW, Ledford JS, Zhang X (2007) Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG). CatalToday 123(1–4):310–315Google Scholar
  5. 5.
    Li X, San X, Zhang Y, Ichii T, Meng M, Tan Y et al (2010) Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts. Chemsuschem 3(10):1192–1199Google Scholar
  6. 6.
    Wang D, Yang G, Ma Q, Yoneyama Y, Tan Y, Han Y et al (2013) Facile solid-state synthesis of Cu–Zn–O catalysts for novel ethanol synthesis from dimethyl ether (DME) and syngas (CO + H2). Fuel 109:54–60Google Scholar
  7. 7.
    Yang G, San X, Jiang N, Tanaka Y, Li X, Jin Q et al (2011) A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts. Catal Today 164(1):425–428Google Scholar
  8. 8.
    He T, Ren P, Liu X, Xu S, Han X, Bao X (2015) Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy. ChemComm 51(94):16868–16870Google Scholar
  9. 9.
    Bhan A, Allian AD, Sunley GJ, Law D, Iglesia E (2007) Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. J Am Chem Soc 129:4919–4924Google Scholar
  10. 10.
    Liu J, Xue H, Huang X, Li Y, Shen W (2010) Dimethyl ether carbonylation to methyl acetate over HZSM-35. Catal Lett 139(1–2):33–37Google Scholar
  11. 11.
    Feng P, Zhang G, Chen X, Zang K, Li X, Xu L (2018) Specific zone within 8-membered ring channel as catalytic center for carbonylation of dimethyl ether and methanol over FER zeolite. Appl Catal A 557:119–124Google Scholar
  12. 12.
    Cheung P, Bhan A, Sunley GJ, Iglesia E (2006) Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites. Angew Chem Int Ed 45(10):1617–1620Google Scholar
  13. 13.
    Cheung P, Bhan A, Sunley G, Law D, Iglesia E (2007) Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. J Catal 245(1):110–123Google Scholar
  14. 14.
    Zhou H, Zhu W, Shi L, Liu H, Liu S, Xu S et al (2015) Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate. Catal Sci Technol 5(3):1961–1968Google Scholar
  15. 15.
    Reule AAC, Semagina N (2016) Zinc hinders deactivation of copper-mordenite: dimethyl ether carbonylation. ACS Catal 6(8):4972–4975Google Scholar
  16. 16.
    Lu P, Yang G, Tanaka Y, Tsubaki N (2014) Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst. Catal Today 232:22–26Google Scholar
  17. 17.
    Blasco T, Boronat M, Concepción P, Corma A, Law D, Vidal-Moya JA (2007) Carbonylation of methanol on metal-acid zeolites: evidence for a mechanism involving a multisite active center. Angew Chem 119(21):4012–4015Google Scholar
  18. 18.
    Jang J, Kim G-P, Chang TS, Kim B-S, Shim SE, Park SH et al (2016) Preparation of nanostructured CuO/ZnO/Al2O3 catalysts for the synthesis of methanol from syngas. J Nanosci Nanotechnol 16(10):10887–10891Google Scholar
  19. 19.
    He L, Cheng H, Liang G, Yu Y, Zhao F (2013) Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester. Appl Catal A 452:88–93Google Scholar
  20. 20.
    Liu Y-J, Jia L, Deng X, Huang W, Vinokurov VA (2018) Promotional influence of hydroxyl complexing agent on ethanol synthesis from syngas over CuZnAl catalysts without other metal promoters. Catal Lett 148(11):3477–3485Google Scholar
  21. 21.
    Zhang S, Liu Q, Fan G, Li F (2012) Highly-dispersed copper-based catalysts from Cu–Zn–Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol. Catal Lett 142(9):1121–1127Google Scholar
  22. 22.
    San X, Zhang Y, Shen W, Tsubaki N (2009) New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst. Energy Fuels 23:2843–2844Google Scholar
  23. 23.
    Wei Q, Yang G, Gao X, Tan L, Ai P, Zhang P et al (2017) A facile ethanol fuel synthesis from dimethyl ether and syngas over tandem combination of Cu-doped HZSM35 with Cu-Zn-Al catalyst. Chem Eng J 316:832–841Google Scholar
  24. 24.
    Liu Y, Murata K, Inaba M, Takahara I (2013) Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation, and methyl acetate hydrogenolysis. Fuel Process Technol 110:206–213Google Scholar
  25. 25.
    Kim S, Kim YT, Zhang C, Kwak G, Jun K-W (2017) Effect of reaction conditions on the catalytic dehydration of methanol to dimethyl ether over a K-modified HZSM-5 catalyst. Catal Lett 147(3):792–801Google Scholar
  26. 26.
    Portillo Crespo MA, Villanueva Perales AL, Vidal-Barrero F, Campoy M (2015) Effects of methanol co-feeding in ethanol synthesis from syngas using alkali-doped MoS2 catalysts. Fuel Process Technol 134:270–274Google Scholar
  27. 27.
    Li Y, Huang S, Cheng Z, Wang S, Ge Q, Ma X (2018) Synergy between Cu and Brønsted acid sites in carbonylation of dimethyl ether over Cu/H-MOR. J Catal 365:440–449Google Scholar
  28. 28.
    Gao X, Xu B, Yang G, Feng X, Yoneyama Y, Taka U et al (2018) Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas. Catal Sci Technol 8(8):2087–2097Google Scholar
  29. 29.
    Wang M, Huang S, Lü J, Cheng Z, Li Y, Wang S et al (2016) Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. Chin J Catal 37(9):1530–1537Google Scholar
  30. 30.
    Shaharun S, Shaharun MS, Mohamad D, Taha MF (2014) The effect of Cu/Zn molar ratio on CO2 hydrogenation over Cu/ZnO/ZrO2/Al2O3 catalyst. AIP 3(1621):3–9Google Scholar
  31. 31.
    Ma M, Zhan E, Huang X, Ta N, Xiong Z (2018) Carbonylation of dimethyl ether over Co-HMOR. Catal Sci Technol 8:2124–2130Google Scholar
  32. 32.
    Richter M, Fait MJG, Eckelt R, Schreier E, Schneider M, Pohl MM et al (2007) Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure. Appl Catal B 73(3–4):269–281Google Scholar
  33. 33.
    Guo X, Mao D, Lu G, Wang S, Wu G (2010) Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271(2):178–185Google Scholar
  34. 34.
    Shi L, Shen W, Yang G, Fan X, Jin Y, Zeng C et al (2013) Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: as-prepared Cu/ZnO catalysts for low-temperature methanol synthesis. J Catal 302:83–90Google Scholar
  35. 35.
    Salker AV, Weisweiler W (2000) Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions. Appl Catal A 203:221–229Google Scholar
  36. 36.
    Putluru SSR, Riisager A, Fehrmann R (2011) Alkali resistant Cu/zeolite deNOx catalysts for flue gas cleaning in biomass fired applications. Appl Catal B 101(3–4):183–188Google Scholar
  37. 37.
    Coq B, Tachon D, Figueras F (1995) Influence of operating protocol in the temperature-programmed reaction of NO with decane on Cu/mordenite. Catal Lett 35:183–190Google Scholar
  38. 38.
    Kapustin GI, Brueva TR, Klyachko AL (1988) Determination of the number and acid strength of acid sites in zeolites by ammonia adsorption comparison of calorimetry and temperature-programmed desorption of ammonia. Appl Catal 42:239–246Google Scholar
  39. 39.
    Xue H, Huang X, Ditzel E, Zhan E, Ma M, Shen W (2013) Dimethyl ether carbonylation to methyl acetate over nanosized mordenites. Ind Eng Chem Res 52(33):11510–11515Google Scholar
  40. 40.
    Zhou L, Li S, Qi G, Su Y, Li J, Zheng A et al (2016) Methanol carbonylation over copper-modified mordenite zeolite: a solid-state NMR study. Solid State Nucl Magn Reson 80:1–6Google Scholar
  41. 41.
    Zhang X, Li YP, Qiu SB, Wang TJ, Ding MY, Zhang Q et al (2013) Synthesis of methyl acetate by dimethyl ether carbonylation over Cu/HMOR: effect of catalyst preparation method. Chin J Chem Phys 26(1):77–82Google Scholar
  42. 42.
    Zhang X, Li YP, Qiu SB, Wang TJ, Ma LL, Zhang Q et al (2013) Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction. Chin J Chem Phys 26(2):220–224Google Scholar
  43. 43.
    Faungnawakij K, Tanaka Y, Shimoda N, Fukunaga T, Kawashima S, Kikuchi R et al (2006) Influence of solid–acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production. Appl Catal A 304:40–48Google Scholar
  44. 44.
    Shishido T, Yamamoto M, Li D, Tian Y, Morioka H, Honda M et al (2006) Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Appl Catal A 303(1):62–71Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Peng Lu
    • 1
    • 2
    Email author
  • Emmerson Hondo
    • 1
  • Linet Gapu Chizema
    • 1
  • Chengxue Lu
    • 1
  • Yongfei Mei
    • 1
  • Mingliang Tong
    • 1
  • Chuang Xing
    • 1
    • 2
  • Ruiqin Yang
    • 1
    • 2
  1. 1.Zhejiang Provincial Key Lab for Chem. and Bio. Processing Technology of Farm ProductHangzhouPeople’s Republic of China
  2. 2.School of Biological and Chemical EngineeringZhejiang University of Science and TechnologyHangzhouPeople’s Republic of China

Personalised recommendations