Skip to main content

Advertisement

Log in

Hierarchical Porous Carbon-Supported Copper Nanoparticles as an Efficient Catalyst for the Dimethyl Carbonate Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of three-dimensional (3D)-interconnected hierarchical porous carbons (HPCs) were prepared through a “leavening” strategy. α-Cellulose and NaHCO3 were used as a raw material and foaming agent, respectively, to support copper catalysts (Cu/HPC) for dimethyl carbonate (DMC) synthesis by the oxidative carbonylation of methanol. The calcination temperature had a significant influence on the textural properties of the HPC and the catalytic performance of the Cu/HPC. The catalyst calcined at 900 °C exhibited the highest catalytic activity with a DMC space–time yield of 2018 mg/(g h). The characterization results indicated that the outstanding catalytic activity was related to the highest dispersion of copper species and to a high content of surface Cu0 species, which can be attributed mainly to the enhanced anchoring effect of abundant micro- and mesopores of a 3D-interconnected network. In addition, the well-developed 3D-interconnected hierarchical porous structure provided a rapid and efficient channel for reactant and product transport and migration, which enhanced the catalytic performance. This work expands the potential application range of HPC materials and presents a novel procedure to prepare catalysts for DMC synthesis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tundo P, Selva M (2002) Acc Chem Res 35:706–716

    Article  CAS  PubMed  Google Scholar 

  2. Keller N, Rebmann G, Keller V (2010) J Mol Catal A 317:1–18

    Article  CAS  Google Scholar 

  3. Huang SY, Yan B, Wang SP, Ma XB (2015) Chem Soc Rev 44:3079–3116

    Article  CAS  PubMed  Google Scholar 

  4. Wang MH, Wang H, Zhao N, Wei W, Sun YH (2006) Catal Commun 7:6–10

    Article  CAS  Google Scholar 

  5. Wang JQ, Sun J, Cheng WG, Shi CY, Dong K, Zhang XP, Zhang SJ (2012) Catal Sci Technol 2:600–605

    Article  CAS  Google Scholar 

  6. Tan HZ, Wang ZQ, Xu ZN, Sun J, Xu YP, Chen QS, Chen Y, Guo GC (2018) Catal Today 316:2–12

    Article  CAS  Google Scholar 

  7. Han MS, Lee BG, Ahn BS, Kim HS, Moon DJ, Hong SI (2003) J Mol Catal A 203:137–143

    Article  CAS  Google Scholar 

  8. Delledonne D, Rivetti F, Fomano U (2001) Appl Catal A 221:241–251

    Article  CAS  Google Scholar 

  9. Romano U, Tesei R, Cipriani G, Micucci L (1980) US Patent 4,218,391

  10. Curnutt GL (1991) US Patent 5004827-A, 2 Apr 1991

  11. Gong JL, Ma XB, Wang SP (2007) Appl Catal A 316:1–21

    Article  CAS  Google Scholar 

  12. Dang TTH, Bartoszek M, Schneider M, Hoang DL, Bentrup U, Martin A (2012) Appl Catal B 121–122:115–122

    Article  CAS  Google Scholar 

  13. Anderson SA, Root TW (2003) J Catal 217:396–405

    Article  CAS  Google Scholar 

  14. Tomishige K, Sakaihori T, Sakai SI, Fujimoto K (1999) Appl Catal A 181:95–102

    Article  CAS  Google Scholar 

  15. Jiang RX, Wang YJ, Zhao XQ, Wang SF, Jin CQ, Zhang CF (2002) J Mol Catal A 185:159–166

    Article  CAS  Google Scholar 

  16. Briggs DN, Lawrence KH, Bell AT (2009) Appl Catal A 366:71–83

    Article  CAS  Google Scholar 

  17. Ding XS, Dong XM, Kuang DT, Wang SF, Zhao XQ, Wang YJ (2014) Chem Eng J 240:221–227

    Article  CAS  Google Scholar 

  18. Huang SY, Wang Y, Wang ZZ, Yan B, Wang SP, Gong JL, Ma XB (2012) Appl Catal A 417–418:236–242

    Article  CAS  Google Scholar 

  19. Rebmann G, Keller V, Ledoux MJ, Keller N (2008) Green Chem 10:207–213

    Article  CAS  Google Scholar 

  20. King ST (1996) J Catal 161:530–538

    Article  CAS  Google Scholar 

  21. Drake IJ, Zhang YH, Briggs D, Lim B, Chau T, Bell AT (2006) J Phys Chem B 110:11654–11664

    Article  CAS  PubMed  Google Scholar 

  22. Rybakov AA, Bryukhanov IA, Larin AV, Zhidomirov GM (2018) J Phys Chem C 122:5366–5375

    Article  CAS  Google Scholar 

  23. Wang YJ, Jiang RX, Zhao XQ, Wang SF (2000) J Nat Gas Chem 9:205–211

    CAS  Google Scholar 

  24. Zhang GQ, Li Z, Zheng HY, Fu TJ, Ju YB, Wang YC (2015) Appl Catal B 179:95–105

    Article  CAS  Google Scholar 

  25. Ren MJ, Ren J, Hao PP, Yang JZ, Wang DL, Pei YL, Lin JY, Li Z (2016) ChemCatChem 8:861–871

    Article  CAS  Google Scholar 

  26. Merza G, László B, Oszkó A, Pótári G, Varga E, Erdőhelyi A (2014) Catal Lett 145:881–892

    Article  CAS  Google Scholar 

  27. Bell AT (2003) Science 299:1688–1691

    Article  CAS  PubMed  Google Scholar 

  28. Yuan YZ, Cao W, Weng WZ (2004) J Catal 228:311–320

    Article  CAS  Google Scholar 

  29. Hao PP, Ren J, Yang LL, Qin ZF, Lin JY, Li Z (2016) Chem Eng J 283:1295–1304

    Article  CAS  Google Scholar 

  30. Ren J, Hao PP, Sun W, Shi RN, Liu SS (2017) Chem Eng J 328:673–682

    Article  CAS  Google Scholar 

  31. Wang J, Shi RN, Hao PP, Sun W, Liu SS, Li Z, Ren J (2018) J Mater Sci 53:1833–1850

    Article  CAS  Google Scholar 

  32. Shi RN, Zhao JX, Liu SS, Sun W, Li HX, Hao PP, Li Z, Ren J (2018) Carbon 130:185–195

    Article  CAS  Google Scholar 

  33. Li HX, Zhao JX, Shi RN, Hao PP, Liu SS, Li Z, Ren J (2018) Appl Surf Sci 436:803–813

    Article  CAS  Google Scholar 

  34. Fang B, Kim JH, Kim MS, Yu JS (2013) Acc Chem Res 46:1397–1406

    Article  CAS  PubMed  Google Scholar 

  35. Zeng QC, Wu DC, Zou C, Xu F, Fu RW, Li ZH, Liang YR, Su DS (2010) Chem Commun 46:5927–5929

    Article  CAS  Google Scholar 

  36. Song C, Du JP, Zhao JH, Feng SA, Du GX, Zhu ZP (2009) Chem Mater 21:1524–1530

    Article  CAS  Google Scholar 

  37. Liang J, Zhou RF, Chen XM, Tang YH, Qiao SZ (2014) Adv Mater 26:6074–6079

    Article  CAS  PubMed  Google Scholar 

  38. Yue D, Lei J, Lina Z, Zhenran G, Du X, Li J (2018) Catal Lett 148:1100–1109

    Article  CAS  Google Scholar 

  39. Zhao XH, Sun ZP, Zhu ZQ, Li A, Li GX, Wang XL (2013) Catal Lett 143:657–665

    Article  CAS  Google Scholar 

  40. Zhang ZP, Sun JT, Wang F, Dai LM (2018) Angew Chemie 57:9038–9043

    Article  CAS  Google Scholar 

  41. Tang MH, Deng J, Li MM, Li XF, Li HR, Chen ZR, Wang Y (2016) Green Chem 18:6082–6090

    Article  CAS  Google Scholar 

  42. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chemie 120:379–382

    Article  Google Scholar 

  43. Kubo S, White RJ, Tauer K, Titirici MM (2013) Chem Mater 25:4781–4790

    Article  CAS  Google Scholar 

  44. Liu B, Shioyama H, Akita T, Xu Q (2008) J Am Chem Soc 130:5390–5391

    Article  CAS  PubMed  Google Scholar 

  45. Sun ZK, Liu Y, Li B, Wei J, Wang MH, Yue Q, Deng YH, Kaliaguine S, Zhao DY (2013) ACS Nano 7:8706–8714

    Article  CAS  PubMed  Google Scholar 

  46. Dutta S, Bhaumik A, Wu KCW (2014) Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  47. Deng J, Xiong T, Xu F, Li MM, Han CL, Gong YT, Wang HY, Wang Y (2015) Green Chem 17:4053–4060

    Article  CAS  Google Scholar 

  48. Deng J, Xiong TY, Wang HY, Zheng AM, Wang Y (2016) Chem Eng 4:3750–3756

    CAS  Google Scholar 

  49. Huang WT, Zhang H, Huang YQ, Wang WK, Wei SC (2011) Carbon 49:838–843

    Article  CAS  Google Scholar 

  50. Xu GY, Han JP, Ding B, Nie P, Pan J, Dou H, Li HS, Zhang XG (2015) Green Chem 17:1668–1674

    Article  CAS  Google Scholar 

  51. Zhao YQ, Lu M, Tao PY, Zhang YJ, Gong XT, Yang Z, Zhang GQ, Li HL (2016) J Power Sources 307:391–400

    Article  CAS  Google Scholar 

  52. Zhang XH, Li HX, Zhang K, Wang Q, Qin B, Cao Q, Jin L (2018) J Electrochem Soc 165:A2084–A2092

    Article  CAS  Google Scholar 

  53. Jänes A, Thomberg T, Kurig H, Lust E (2009) Carbon 47:23–29

    Article  CAS  Google Scholar 

  54. Medina-Carrasco S, Valverde JM (2018) Cryst Growth Des 18:4578–4592

    Article  CAS  Google Scholar 

  55. Zhao J, Tran PD, Chen Y, Loo JSC, Barber J, Xu ZJ (2015) ACS Catal 5:4115–4120

    Article  CAS  Google Scholar 

  56. Chen C, Luo C, Zhang XH, Li YP, Huang JL, Chen BQ, Chen JH (2017) New J Chem 41:7432–7437

    Article  CAS  Google Scholar 

  57. Marchi AJ, Fierro JLG, Santamaría J, Monzón A (1996) Appl Catal A 142:375–386

    Article  CAS  Google Scholar 

  58. Chary KVR, Seela KK, Sagar GV, Sreedhar B (2004) J Phys Chem B 108:658–663

    Article  CAS  Google Scholar 

  59. Bond GC, Namijo SN, Wakeman JS (1991) J Mol Catal 64:305–319

    Article  CAS  Google Scholar 

  60. Chang FW, Kuo WY, Lee KC (2003) Appl Catal A 246:253–264

    Article  CAS  Google Scholar 

  61. Wang WZ, Wang GH, Wang XS, Zhan YJ, Liu YK, Zheng CL (2002) Adv Mater 14:67–69

    Article  CAS  Google Scholar 

  62. Mondal P, Sinha A, Salam N, Roy AS, Jana NR, Islam SM (2013) RSC Adv 3:5615–5623

    Article  CAS  Google Scholar 

  63. Espinós JP, Morales J, Barranco A, Caballero A, Holgado JP, González-Elipe AR (2002) J Phys Chem B 106:6921–6929

    Article  CAS  Google Scholar 

  64. Raimondi F, Geissler K, Wambach J, Wokaunn K (2002) Appl Surf Sci 189:59–71

    Article  CAS  Google Scholar 

  65. Li MM, Deng J, Lan YK, Wang Y (2017) ChemistrySelect 2:8486–8492

    Article  CAS  Google Scholar 

  66. Zhao YJ, Guo ZY, Zhang HJ, Peng B, Xu YX, Wang Y, Zhang J, Xu Y, Wang SP, Ma XB (2018) J Catal 357:223–237

    Article  CAS  Google Scholar 

  67. Wang S, Yan LH, Zhao YS, Ma YR, Wu GQ, Wu JF, Zeng SH (2019) Appl Surf Sci 464:294–300

    Article  CAS  Google Scholar 

  68. Wang HX, Zhou LM, Han M, Tao ZL, Cheng FY, Chen J (2015) J Alloys Compd 651:382–388

    Article  CAS  Google Scholar 

  69. Ren J, Wang W, Wang DL, Zuo ZJ, Lin JY, Li Z (2014) Appl Catal A 472:47–52

    Article  CAS  Google Scholar 

  70. Ry W, Li Z, Zheng HY, KC X (2010) Chin J Catal 31:851–856

    Google Scholar 

  71. Zou C, Wu DC, Li MZ, Zeng QC, Xu F, Huang ZY, Fu RW (2010) J Mater Chem 20:731–735

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21776194, 21606159 and 21808154) and Key Research and Development Program of Shanxi Province (Grant No. 201703D121022-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Zhao, J., Shi, R. et al. Hierarchical Porous Carbon-Supported Copper Nanoparticles as an Efficient Catalyst for the Dimethyl Carbonate Synthesis. Catal Lett 149, 3184–3193 (2019). https://doi.org/10.1007/s10562-019-02884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02884-7

Keywords

Navigation