Skip to main content

Using DFT Models of Thiophene Adsorption at Transition Metal Interfaces to Interpret Periodic Trends in Thiophene Hydrodesulfurization on Transition Metal Sulfides

Abstract

Charge-transfer and molecular adsorption energy have been modeled by density functional theory with the optB88-vdw functional for a large series of thiophene/transition-metal (TM) combinations. We note an offset in a direct scaling relationship exhibited between these properties sufficient to separate the TMs into two distinct groups. The difference in relationship is shown to correlate strongly with different trends in thiophene hydrodesulfurization when catalyzed by corresponding monometallic transition-metal-sulfides.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Song CS (2003) Catal Today 86:211

    Article  CAS  Google Scholar 

  2. Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345

    CAS  Google Scholar 

  3. Wiegand BC, Friend CM (1992) Chem Rev 92:491

    Article  CAS  Google Scholar 

  4. Wang HM, Iglesia EJ (2010) Catalysis 273:245

    Article  CAS  Google Scholar 

  5. Anderson JR, Boudart M (1996) Catalysis. Science and technology. Springer, Berlin

    Book  Google Scholar 

  6. Mikovsky RJ, Silvestri AJ, Heineman H (1974) J Catal 34:324

    Article  CAS  Google Scholar 

  7. Borgna A, Hensen EJM, van Veen JAR, Niemantsverdriet JW (2004) J Catal 221:541

    Article  CAS  Google Scholar 

  8. Girgis MJ, Gates BC (1991) Ind Eng Chem Res 30:2021

    Article  CAS  Google Scholar 

  9. Owens PJ, Amberg CH (1961) Adv Chem Serv 33:182

    Article  CAS  Google Scholar 

  10. Lee HC, Butt JB (1977) J Catal 49:320

    Article  CAS  Google Scholar 

  11. Doukeh R, Bombos M, Trifoi A, Mihai O, Popovici D, Bolocan I, Bombos D (2018) Rev Chim 21:277

    Article  CAS  Google Scholar 

  12. Hensen EJM, Vissenberg MJ, deBeer VHJ, vanVeen JAR, van Santen RA (1996) J Catal 163:429

    Article  CAS  Google Scholar 

  13. Hensen EJM, Brans HJA, Lardinois G, de Beer VHJ, van Veen JAR, van Santen RA (2000) J Catal 192:98

    Article  CAS  Google Scholar 

  14. Ledoux MJ, Michaux O, Agostini G, Panissod P (1986) J Catal 102:275

    Article  CAS  Google Scholar 

  15. Pecoraro TA, Chianelli RR (1981) J Catal 67:430

    Article  CAS  Google Scholar 

  16. Moses PG, Hinnemann B, Topsoe H, Nørskov JK (2007) J Catal 248:188

    Article  CAS  Google Scholar 

  17. Gellman AJ, Farias MH, Somorjai GA (1984) J Catal 88:546

    Article  CAS  Google Scholar 

  18. Gellman AJ, Farias MH, Salmeron M, Somorjai GA (1984) Surf Sci 136:217

    Article  CAS  Google Scholar 

  19. Bussell ME, Somorjai GA (1987) J Catal 106:93

    Article  CAS  Google Scholar 

  20. Bussell ME, Gellman AJ, Somorjai GA (1988) J Catal 110:423

    Article  CAS  Google Scholar 

  21. Bussel ME, Gellman AJ, Somorjai GA (1988) Catal Lett 1:195

    Article  CAS  Google Scholar 

  22. Kelly DG, Salmeron M, Somorjai GA (1986) Surf Sci 175:465

    Article  CAS  Google Scholar 

  23. Gellman AJ, Neiman D, Somorjai GA (1987) J Catal 107:92

    Article  CAS  Google Scholar 

  24. Gellman AJ, Bussell ME, Somorjai GA (1987) J Catal 107:103

    Article  CAS  Google Scholar 

  25. Rodriguez JA, Kim J-Y, Hanson JC, Sawhill SJ, Bussell ME (2003) J Phys Chem 6276:6285

    Google Scholar 

  26. Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) J Phys Chem 4575:4583

    Google Scholar 

  27. Zhao H, Oyama T, Freund H-J, Włodarczyk R, Sierka M (2015) Appl Catal B 204:216

    Google Scholar 

  28. Malone W, Matos J, Kara A (2018) Surf Sci 669:121

    Article  CAS  Google Scholar 

  29. Malone W, Yildirim H, Matos J, Kara A (2017) J Phys Chem C 121:6090

    Article  CAS  Google Scholar 

  30. Malone W, Kaden W, Kara A (2019) Surf Sci 30:38

    Google Scholar 

  31. Blochl PE (1994) Phys Rev B 50:17953

    Article  CAS  Google Scholar 

  32. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  34. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  35. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  36. Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131

    Article  CAS  Google Scholar 

  37. Carrasco J, Klimeš J, Michaelides A (2013) J Chem Phys 138:024708

    Article  CAS  PubMed  Google Scholar 

  38. Carrasco J, Santra B, Klimeš J, Michaelides A (2011) Phys Rev Lett 106:026101

    Article  CAS  PubMed  Google Scholar 

  39. Klimeš J, Michaelides A (2012) J Chem Phys 137:120901

    Article  CAS  PubMed  Google Scholar 

  40. Liu W, Carrasco J, Santra B, Michaelides A, Scheffler M, Tkatchenko A (2012) Phys Rev B 86:245405

    Article  CAS  Google Scholar 

  41. Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M (2010) MRS Bull 35:435

    Article  CAS  Google Scholar 

  42. Mittendorfer F, Garhofer A, Redinger J, Klimeš J, Harl J, Kresse G (2011) Phys Rev B 84:201401

    Article  CAS  Google Scholar 

  43. Heckel W, Wurger T, Muller S, Feldbauer G (2017) J Phys Chem C 121:17207

    Article  CAS  Google Scholar 

  44. Graziano G, Klimeš J, Fernandez-Alonso F, Michaelides A (2012) J Phys Condes Matter 24:424216

    Article  CAS  Google Scholar 

  45. Klimeš J, Bowler DR, Michaelides A (2010) J Phys Condes Matter 22:022201

    Article  CAS  Google Scholar 

  46. Yildirim H, Greber T, Kara A (2013) J Phys Chem C 117:20572

    Article  CAS  Google Scholar 

  47. Matos J, Yildirim H, Kara A (2015) J Phys Chem C 119:1886

    Article  CAS  Google Scholar 

  48. Yildirim H, Kara A (2013) J Phys Chem C 117:2893

    Article  CAS  Google Scholar 

  49. Matos J, Rojas T, Yildirim H, Kara A (2014) J Chem Phys 140:144703

    Article  CAS  PubMed  Google Scholar 

  50. Yildirim H, Matos J, Kara A (2015) J Phys Chem C 119:25408

    Article  CAS  Google Scholar 

  51. Hestenes MR, Stiefel EJ (1952) Res Natl Bur Stand 49:409

    Article  Google Scholar 

  52. Teter MP, Payne MC, Allan DC (1989) Phys Rev B 40:12255

    Article  CAS  Google Scholar 

  53. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204

    Article  CAS  PubMed  Google Scholar 

  54. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comp Chem 28:899

    Article  CAS  Google Scholar 

  55. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354

    Article  Google Scholar 

  56. Yu M, Trinkle DR (2011) J Chem Phys 134:064111

    Article  CAS  PubMed  Google Scholar 

  57. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK (2001) J Am Chem Soc 123:8404

    Article  CAS  PubMed  Google Scholar 

  58. Cheng J, Hu P (2008) J Am Chem Soc 130:10868

    Article  CAS  PubMed  Google Scholar 

  59. Singh AR, Montoya JH, Rohr BA, Tsai C, Vojyodic A, Nørskov JK (2018) ACS Catal 8:4017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy Basic Energy Science under Contract No DE-FG02-11ER16243. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy. For WEK’s contributions, acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support (or partial support) of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William E. Kaden or Abdelkader Kara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malone, W., Kaden, W.E. & Kara, A. Using DFT Models of Thiophene Adsorption at Transition Metal Interfaces to Interpret Periodic Trends in Thiophene Hydrodesulfurization on Transition Metal Sulfides. Catal Lett 149, 2953–2960 (2019). https://doi.org/10.1007/s10562-019-02864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02864-x

Keywords

  • Desulfurization
  • Thiophene
  • Transition metals
  • Volcano plot
  • Density functional theory