Catalysis Letters

, Volume 149, Issue 9, pp 2636–2644 | Cite as

Higher Acetone Conversion Obtained Over a TiO2–Pd Bifunctional Catalyst for Liquid-Phase Synthesis of Methyl Isobutyl Ketone: The Role of Al2O3 Support

  • Qianling Zhu
  • Hui Duan
  • Baining Lin
  • Yifan Zhu
  • Yingjie Hu
  • Yonghua ZhouEmail author


We reported a bifunctional catalyst TiO2/Al2O3 and Pd/Cor for one-pot liquid-phase synthesis of MIBK from acetone in this paper. The characterizations of FT-IR, Raman spectra, TEM, XPS, CO2-TPD, NH3-TPD, Py-IR and TGA spectra revealed that the TiO2/Al2O3 could possess more acid sites and especially Lewis acid sites due to the coexistence of TiO2 and Al2O3. So a higher acetone conversion 35–45% at 150 °C and 2.0 MPa pressure was achieved than ever reported for MIBK liquid-phase synthesis. In addition, the catalyst could keep active for at least 90 h on stream at 80–90% MIBK selectivity. The phenomenon of carbonaceous accumulation on TiO2/Al2O leaded to the deactivation of catalyst.

Graphic Abstract

Because of the coexistence of TiO2 and Al2O3. TiO2/Al2O3 could have more acid sites and especially Lewis acid sites. For liquid-phase synthesis of methyl isobutyl ketone, bifunctional catalyst TiO2/Al2O3&Pd/Cor showed higher acetone conversion.


Acetone Methyl isobutyl ketone TiO2/Al2O3 Lewis acid sites Carbonaceous accumulation 



This work was supported by the National Natural Science Foundation of China (No. 21676303), the Fundamental Research Funds for the Central Universities of Central South University (No. 2018zzts382).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Najwa T, Mohamed K, Francois BV, Leonarda FL, Mahfoud Z (2013) J Mol Catal A: Chem 377:42–50CrossRefGoogle Scholar
  2. 2.
    Denmark SE, Beutner GL (2008) Angew Chem Int Ed 47:1560–1638CrossRefGoogle Scholar
  3. 3.
    Liu XH, Xu XL, Liu SW (2003) J Mol Catal 17:255–258Google Scholar
  4. 4.
    Liu YX, Sun KP, Xu XL, Wang XL (2010) Catal Commun 11:322–325CrossRefGoogle Scholar
  5. 5.
    Pan YY, Yuan BZ, Li YW, He DH (2010) Chem Commun 46:2280–2282CrossRefGoogle Scholar
  6. 6.
    Waters G, Richter O, Kraushaar-Czarnetzki B (2006) Ind Eng Chem Res 45:6111–6117CrossRefGoogle Scholar
  7. 7.
    Hetterley R, Mackey R, Jones J (2008) J Catal 258:250–255CrossRefGoogle Scholar
  8. 8.
    Yang PP, Yu JF, Wang ZL, Xu MP, Liu QS, Yang XW, Wu TH (2005) Catal Commun 6:107–111CrossRefGoogle Scholar
  9. 9.
    Zhang SD, Wu PC, Yang LQ, Zhou YH, Zhong H (2015) Catal Commun 71:61–64CrossRefGoogle Scholar
  10. 10.
    Duan H, Wang ZH, Cui LF, Lin BN, Zhou YH (2018) Ind Eng Chem Res 57:12358–12366CrossRefGoogle Scholar
  11. 11.
    Ahmed MA, Abdel-Messih MF (2011) J Alloys Compd 509:2154–2159CrossRefGoogle Scholar
  12. 12.
    Umit OAA, Fatma ZT (2014) Compos B Eng 58:147–151CrossRefGoogle Scholar
  13. 13.
    Silvester T, Hiroaki I, Hiroshi H (2004) J Non-Cryst Solids 350:271–276CrossRefGoogle Scholar
  14. 14.
    Vázquez-Garrido I, López-Benítez A, Berhault G, Guevara-Lara A (2019) Fuel 236:55–64CrossRefGoogle Scholar
  15. 15.
    Radi OA, Testoni GE, Pessoa RS, Maciel HS, Rocha LA, Vieira L (2018) Surf Coat Technol 349:1077–1082CrossRefGoogle Scholar
  16. 16.
    Guo CY, Shen ZQ, Hu Q, Wang SJ, Ling FX (2015) Mater Chem Phys 151:288–294CrossRefGoogle Scholar
  17. 17.
    Zhou YH, Duan H, Lin BN, Han K, Wei JR (2018) React Kinet Mech Catal 125:303–317CrossRefGoogle Scholar
  18. 18.
    Mahmoud HA, Narasimharao K, Ali TT, Khalil KMS (2018) Nanoscale Res Lett 48:13Google Scholar
  19. 19.
    Parlett CMA, Durndell LJ, Machado A, Cibin G, Bruce DW, Hon-dow NS, Wilson K, Lee AF (2014) Catal Today 229:46–55CrossRefGoogle Scholar
  20. 20.
    Han P, Lai TC, Wang M, Zhao XR, Cao YQ, Wu D, Li AD (2019) Appl Surf Sci 467–468:423–427CrossRefGoogle Scholar
  21. 21.
    Kim LH, Kim K, Park S, Jeong YJ, Kim H, Chung DS, Kim SH, Park CE (2014) ACS Appl Mater Interface 6:6731–6738CrossRefGoogle Scholar
  22. 22.
    Zhao D, Chen C, Wang Y, Ma W, Zhao J, Rajh T, Zang L (2008) Environ Sci Technol 42:308–314CrossRefGoogle Scholar
  23. 23.
    Bao Q, Qi H, Zhang CL, Ning CL, Zhang Y, Jiang Y, Wu YF, Gui WY, Wang ZL (2018) Catal Lett 148:3402–3412CrossRefGoogle Scholar
  24. 24.
    Karthikeyan S, Dionysiou DD, Lee AF, Suvitha S, Maharaja P, Wilson K, Sekaran G (2016) Catal Sci Technol 6:530–544CrossRefGoogle Scholar
  25. 25.
    Zhao W, Tang Y, Wan Y, Li L, Yao S, Li X, Gu J, Li Y, Shi J (2014) J Hazard Mater 278:350–359CrossRefGoogle Scholar
  26. 26.
    Wang LG, Qian X, Cao YQ, Cao ZY, Fang GY, Wu D, Li AD (2015) Nanoscale Res Lett 10:135CrossRefGoogle Scholar
  27. 27.
    Zhang W, Kong JZ, Cao ZY, Li AD, Wang LG, Zhu L, Li X, Cao YQ, Wu D (2017) Nanoscale Res Lett 12:39CrossRefGoogle Scholar
  28. 28.
    Pérez-López G, Ramírez-López R, Viveros T (2018) Catal Today 305:182–191CrossRefGoogle Scholar
  29. 29.
    Li LD, Xu CZ, Zheng MQ, Chen XH (2015) J Fuel Chem Technol 43:990–997CrossRefGoogle Scholar
  30. 30.
    Xu B, Xiao T, Yan Z, Sun X, Sloan J, González-Cortés SL, Alshah-rani F, Green MLH (2006) Microporous Mesoporous Mater 91:293–295CrossRefGoogle Scholar
  31. 31.
    Di Cosimo JI, Torres G, Apesteguía CR (2002) J Catal 208:114–123CrossRefGoogle Scholar
  32. 32.
    Bao Q, Bu TT, Yan JB, Zhang CL, Ni CL, Zhang Y, Hao MM, Zhang WX, Wang ZL (2017) Catal Lett 147:1540–1550CrossRefGoogle Scholar
  33. 33.
    Wang YN, Yan RY, Lv ZP, Wang H, Wang L, Li ZX, Zhang SJ (2016) Catal Lett 146:1808–1818CrossRefGoogle Scholar
  34. 34.
    Yadav R, Muralidhar A, Shamna A, Aghila P, Gurrala L, Sakthivel A (2018) Catal Lett 148:1407–1415CrossRefGoogle Scholar
  35. 35.
    Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghadimi LS (2018) Chem Eng J 334:66–80CrossRefGoogle Scholar
  36. 36.
    Keefe WKO, Ng FTT, Rempel GL (2007) Ind Eng Chem Res 46:716–725CrossRefGoogle Scholar
  37. 37.
    De Clercq R, Dusselier M, Makshina E, Sels BF (2018) Angew Chem Int Ed 130:3128–3132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qianling Zhu
    • 2
  • Hui Duan
    • 1
  • Baining Lin
    • 1
  • Yifan Zhu
    • 1
  • Yingjie Hu
    • 1
  • Yonghua Zhou
    • 1
    Email author
  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Center for Molecular Medicine, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations