Catalysis Letters

, Volume 149, Issue 9, pp 2492–2499 | Cite as

Hierarchical Sheet-on-Sphere Heterostructures as Supports for Metal Nanoparticles: A Robust Catalyst System

  • Shuping Wang
  • Wendi Zhang
  • Zhijie Yang
  • Huiying Wei
  • Yanzhao YangEmail author
  • Jingjing Wei


Two-dimensional (2D) materials enabled the creation of hybrid heterostructures with a variety of properties. Here, inspired by the “core–shell” structures, we report the synthesis of a hierarchical structure based on the growth of 2D Mn/Ni(OH)x sheets on the CeO2 spheres, so called sheet-on-sphere heterostructures. The supported 2D sheets serve as robust support for the immobilization of metal nanoparticles. The as-formed hetero structures offer a robust catalyst system and display excellent catalytic performances toward the 4-nitrophenol reduction in liquid-phase and CO oxidation in gas phase. Moreover, the present catalyst exhibits excellent durability and reusability attributed to the compartmentalized active species against sintering.

Graphic Abstract

The graphical abstract showing the design and synthesis of sheet-on-sphere hierarchical structures and the subsequent metal nanoparticles loading.


Sheet-on-sphere hierarchical structure One-pot reaction Robust catalyst system 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21703120 and 21506072), Qilu Scholars Program of Shandong University.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2019_2858_MOESM1_ESM.docx (7.2 mb)
Supplementary material 1 (DOCX 7410 kb)


  1. 1.
    Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771–773CrossRefGoogle Scholar
  2. 2.
    Kang Y, Ye X, Chen J, Cai Y, Diaz RE, Adzic RR, Stach EA, Murray CB (2013) J Am Chem Soc 135:42–45CrossRefGoogle Scholar
  3. 3.
    Peng S, Lee Y, Wang C, Yin H, Dai S, Sun SA (2008) Nano Res 1:229–234CrossRefGoogle Scholar
  4. 4.
    Pang X, He Y, Jung J, Lin Z (2016) Science 353:1268–1272CrossRefGoogle Scholar
  5. 5.
    Dong R, Zhang T, Feng X (2018) Chem Rev 118:6189–6235CrossRefGoogle Scholar
  6. 6.
    He M, Protesescu L, Caputo R, Krumeich F, Kovalenko MV (2015) Chem Mater 27:635–647CrossRefGoogle Scholar
  7. 7.
    Zhu Y, Qian H, Drake BA, Jin R (2010) Angew Chem Int Ed 122:1317–1320CrossRefGoogle Scholar
  8. 8.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Small 5:1600–1630CrossRefGoogle Scholar
  9. 9.
    Klecha E, Arfaoui I, Richardi J, Ingert D, Pileni MP (2011) Phys Chem Chem Phys 13:2953–2962CrossRefGoogle Scholar
  10. 10.
    Wei J, Schaeffer N, Pileni MPJ (2014) Phys Chem B 118:14070–14075CrossRefGoogle Scholar
  11. 11.
    Diroll BT, Weigandt KM, Jishkariani D, Cargnello M, Murphy RJ, Hough LA, Murray CB, Donnio B (2015) Nano Lett 15:8008–8012CrossRefGoogle Scholar
  12. 12.
    Pileni MP (2007) J Phys Chem C 111:9019–9038CrossRefGoogle Scholar
  13. 13.
    Chen G, Xu C, Huang X, Ye J, Gu L, Li G, Tang Z, Wu B, Yang H, Zhao Z et al (2016) Nat Mater 15:564–569CrossRefGoogle Scholar
  14. 14.
    Wu B, Huang H, Yang J, Zheng N, Fu G (2012) Angew Chem 124:3496–3499CrossRefGoogle Scholar
  15. 15.
    Anderson MW, Holmes SM, Hanif N, Cundy CS (2000) Angew Chem Int Ed 39:2707–2710CrossRefGoogle Scholar
  16. 16.
    Xia F, Brugger J, Ngothai Y, O’Neill B, Chen G, Pring A (2009) Cryst Growth Des 9:4902–4906CrossRefGoogle Scholar
  17. 17.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  18. 18.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  19. 19.
    Cho W, Lee HJ, Oh M (2008) J Am Chem Soc 130:16943–16946CrossRefGoogle Scholar
  20. 20.
    Cheon YE, Suh MP (2009) Angew Chem Int Ed 48:2899–2903CrossRefGoogle Scholar
  21. 21.
    Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) J Am Chem Soc 131:11302–11303CrossRefGoogle Scholar
  22. 22.
    Liu J (2017) ACS Catal 7:34–59CrossRefGoogle Scholar
  23. 23.
    Vitaku E, Dichtel WR (2017) J Am Chem Soc 139:12911–12914CrossRefGoogle Scholar
  24. 24.
    Chen JS, Liu J, Qiao SZ, Xu R, Lou XW (2011) Chem Commun 47:10443–10445CrossRefGoogle Scholar
  25. 25.
    Schätz A, Reiser O, Stark WJ (2010) Chem A Eur J 16:8950–8967CrossRefGoogle Scholar
  26. 26.
    Liang J, Liang Z, Zou R, Zhao Y (2017) Adv Mater 29:1701139CrossRefGoogle Scholar
  27. 27.
    Wang X, Liu DP, Song SY, Zeng L, Zhang Y (2012) Dalton Trans 41:7193–7195CrossRefGoogle Scholar
  28. 28.
    Zhai Y, Pierre D, Si R, Deng W, Ferrin P, Nilekar AU, Peng G, Herron JA, Bell DC, Saltsburg H et al (2010) Science 329:1633–1636CrossRefGoogle Scholar
  29. 29.
    Parkinson GS, Novotny Z, Argentero G, Schmid M, Pavelec J, Kosak R, Blaha P, Diebold U (2013) Nat Mater 12:724CrossRefGoogle Scholar
  30. 30.
    Motte L, Billoudet F, Lacaze E, Pileni MP (1996) Adv Mater 8:1018–1020CrossRefGoogle Scholar
  31. 31.
    Petit C, Taleb A, Pileni MP (1998) Adv Mater 10:259–261CrossRefGoogle Scholar
  32. 32.
    Wei J, Schaeffer N, Pileni MP (2015) J Am Chem Soc 137:14773–14784CrossRefGoogle Scholar
  33. 33.
    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Nature 439:55–59CrossRefGoogle Scholar
  34. 34.
    Talapin DV, Shevchenko EV, Murray CB, Titov AV, Král P (2007) Nano Lett 7:1213–1219CrossRefGoogle Scholar
  35. 35.
    Yang Z, Wei J, Bonville P, Pileni MP (2015) J Am Chem Soc 137:4487–4493CrossRefGoogle Scholar
  36. 36.
    Jana S, de Frutos M, Davidson P, Abécassis B (2017) Sci Adv 3:e1701483CrossRefGoogle Scholar
  37. 37.
    Spinner N, Mustain WE (2011) Electrochim Acta 56:5656–5666CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuping Wang
    • 1
    • 3
  • Wendi Zhang
    • 1
    • 3
  • Zhijie Yang
    • 1
    • 2
  • Huiying Wei
    • 1
  • Yanzhao Yang
    • 1
    • 3
    Email author
  • Jingjing Wei
    • 1
  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong UniversityJinanPeople’s Republic of China
  3. 3.Key Laboratory for Special Functional Aggregate Materials of Education MinistryShandong UniversityJinanPeople’s Republic of China

Personalised recommendations