Skip to main content
Log in

Cucurbit[6]uril Glued Magnetic Clay Hybrid as a Catalyst for Nitrophenol Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cucurbit[6]uril (CB6) was used as a molecular glue for preparation of a new hybrid material using exfoliated montmorillonite clay and copper ferrite magnetic nanoparticles. Hybrid material was prepared by ultra-sonication method and characterised by FTIR, DR UV–Vis, XRD, FE-SEM, TEM, TGA and BET surface area measurements. The catalytic activity of the hybrid was examined for reduction of a potential industrial pollutant, 4-nitrophenol. The hybrid exhibited good catalytic activity (kapp 0.026 s−1) with low catalyst loading (∼0.05 mg/ml) and was found suitable for large scale application. The hybrid catalyst was successfully recycled and reused up to eight reaction cycles without any loss in catalytic activity. Here, CB6 acted like a molecular glue stabilising the hybrid catalyst. This greatly improved reusability in comparison with bare nanoparticles and clay composite. This approach where CB6 was used as a molecular glue can be conveniently utilised for stabilising nanoparticles on various solid support materials to develop better quality catalysts, composites and hybrid materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shahwan T, Abu Sirriah S, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  2. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem-Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  3. Cao M, Lin J, Yang H, Cao R (2010) Facile synthesis of palladium nanoparticles with high chemical activity using cucurbit [6] uril as protecting agent w. Chem Commun 46:5088–5090

    Article  CAS  Google Scholar 

  4. Lu X, Masson E (2011) Formation and stabilization of silver nanoparticles with cucurbit[n]urils (n = 5-8) and cucurbituril-based pseudorotaxanes in aqueous medium. Langmuir 27:3051–3058

    Article  CAS  PubMed  Google Scholar 

  5. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Polym Sci 38:1231–1261

    Google Scholar 

  6. Benyettou F, Milosevic I, Lalatonne Y et al (2013) Toward theranostic nanoparticles: CB[7]-functionalized iron oxide for drug delivery and MRI. J Mater Chem B 1:5076–5082

    Article  CAS  Google Scholar 

  7. Benyettou F, Nchimi- Nono K, Jouiad M et al (2015) Viologen-templated arrays of cucurbit[7]uril-modified iron-oxide nanoparticles. Chem A 21:4607–4613

    CAS  Google Scholar 

  8. Benyettou F, Motte L, Traboulsi H, Mazher J, Pasricha R, Olsen JC, Trabolsi A, Guenin E (2018) Palladium-loaded cucurbit [7] uril-modified iron oxide nanoparticles for C–C cross-coupling reactions. Chem Eur J 24:2349–2353

    Article  CAS  PubMed  Google Scholar 

  9. Qiu XL, Zhou Y, Jin XY et al (2015) One-pot solvothermal synthesis of biocompatible magnetic nanoparticles mediated by cucurbit[n]urils. J Mater Chem C 3:3517–3521

    Article  CAS  Google Scholar 

  10. Qiao H, Jia J, Chen W et al (2018) Magnetic regulation of thermo-chemotherapy from a cucurbit[7]uril-crosslinked hybrid hydrogel. Adv Healthc Mater 8(2):1801458

    Article  CAS  Google Scholar 

  11. Taylor R (2016) Precise subnanometer plasmonic junctions for precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit [n] uril “glue”. ACS Nano 5(5):3878–3887

    Article  CAS  Google Scholar 

  12. Mishra T, Parida K (1997) Transition-metal oxide pillared clays: part 2—a comparative study of textural and acidic properties of manganese(III) pillared montmorillonite and pillared acid-activated montmorillonite. J Mater Chem 7:147–152

    Article  CAS  Google Scholar 

  13. Bagchi B, Thakur P, Kool A et al (2014) In situ synthesis of environmentally benign montmorillonite supported composites of Au/Ag nanoparticles and their catalytic activity in the reduction of p-nitrophenol. RSC Adv 4:61114–61123

    Article  CAS  Google Scholar 

  14. Kloprogge JT (1999) Synthesis of smectite clay minerals: a critical review. Clays Clay Miner 47:529–554

    Article  CAS  Google Scholar 

  15. Ganguly S, Dana K, Mukhopadhyay TK et al (2011) Organophilic nano clay: a comprehensive review. Trans Indian Ceram Soc 70:189–206

    Article  CAS  Google Scholar 

  16. Kausar A, Iqbal M, Javed A et al (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq 256:395–407

    Article  CAS  Google Scholar 

  17. Higson FK (1992) Microbial degradation of nitroaromatic compounds. Advances in applied microbiology. Acedemic Press, Inc., New York, pp 1–19

    Google Scholar 

  18. Gupta VK, Sharma S, Yadav IS, Mohan D (1998) Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol andp-nitrophenol from wastewater. J Chem Technol Biotechnol 71:180–186

    Article  CAS  Google Scholar 

  19. Di Paola A, Augugliaro V, Palmisano L et al (2003) Heterogeneous photocatalytic degradation of nitrophenols. J Photochem Photobiol, A 155:207–214

    Article  Google Scholar 

  20. Feng J, Su L, Ma Y et al (2013) CuFe2O4 magnetic nanoparticles: a simple and efficient catalyst for the reduction of nitrophenol. Chem Eng J 221:16–24

    Article  CAS  Google Scholar 

  21. Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247–257

    Article  CAS  Google Scholar 

  22. Devi TB, Ahmaruzzaman M (2017) Bio-inspired facile and green fabrication of Au@Ag@AgCl core–double shells nanoparticles and their potential applications for elimination of toxic emerging pollutants: a green and efficient approach for wastewater treatment. Chem Eng J 317:726–741

    Article  CAS  Google Scholar 

  23. Cao E, Duan W, Wang F et al (2017) Natural cellulose fiber derived hollow-tubular-oriented polydopamine: in-situ formation of Ag nanoparticles for reduction of 4-nitrophenol. Carbohydr Polym 158:44–50

    Article  CAS  PubMed  Google Scholar 

  24. Seo YS, Ahn E-Y, Park J et al (2017) Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Res Lett 12:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lebaschi S, Hekmati M, Veisi H (2017) Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J Colloid Interface Sci 485:223–231

    Article  CAS  PubMed  Google Scholar 

  26. You JG, Shanmugam C, Liu YW et al (2017) Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: modification of metal naoparticles with poly(diallyldimethylammonium chloride). J Hazard Mater 324:420–427

    Article  CAS  PubMed  Google Scholar 

  27. Goyal A, Bansal S, Singhal S (2014) Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int J Hydrog Energy 39:4895–4908

    Article  CAS  Google Scholar 

  28. Zhang H, Gao S, Shang N et al (2014) Copper ferrite-graphene hybrid: a highly efficient magnetic catalyst for chemoselective reduction of nitroarenes. RSC Adv 4:31328–31332

    Article  CAS  Google Scholar 

  29. Jansen K, Buschmann H, Wego A et al (2001) Solubility and amine complex formation. Solutions 39:357–363

    CAS  Google Scholar 

  30. Yoonessi M, Toghiani H, Kingery WL, Pittman CU (2004) Preparation, characterization, and properties of exfoliated/delaminated organically modified clay/dicyclopentadiene resin nanocomposites. Macromolecules 37:2511–2518

    Article  CAS  Google Scholar 

  31. Zhang G, Qu J, Liu H et al (2007) CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68:1058–1066

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Chen G (2013) Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale 5:11919

    Article  CAS  Google Scholar 

  33. Bazgir A, Azimi SC (2013) Photocatalytic efficiency of CuFe2O4 by supporting on clinoptilolite in the decolorization of acid red 206 aqueous solutions. Iran J Catal 3:21–26

    CAS  Google Scholar 

  34. Wang Y, Li H, Zhang J et al (2016) Fe 3 O 4 and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol. Phys Chem Chem Phys 18:615–623

    Article  CAS  PubMed  Google Scholar 

  35. Fang-hsin L, Doong R (2011) Bifunctional Au? Fe3O4 heterostructures for magnetically recyclable catalysis catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598

    Article  CAS  Google Scholar 

  36. Noh J, Meijboom R (2014) Reduction of 4-nitrophenol as a model reaction for nanocatalysis. Appl Nanotechnol Water Res 9781118496:333–405

    Google Scholar 

  37. Kanagaraj M, Sathishkumar P, Selvan GK et al (2014) Structural and magnetic properties of CuFe2O4 as-prepared and thermally treated spinel nanoferrites. Indian J Pure Appl Phys 52:124–130

    CAS  Google Scholar 

  38. Mohan B, Park KH (2016) Superparamagnetic copper ferrite nanoparticles catalyzed aerobic, ligand-free, regioselective hydroboration of alkynes: influence of synergistic effect. Appl Catal A 519:78–84

    Article  CAS  Google Scholar 

  39. Kefeni KK, Mamba BB, Msagati TAM (2017) Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol 188:399–422

    Article  CAS  Google Scholar 

  40. Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    Article  CAS  Google Scholar 

  41. Nakhate AV, Yadav GD (2017) Hydrothermal synthesis of CuFe2O4 magnetic nanoparticles as active and robust catalyst for N-arylation of indole and imidazole with aryl halide. ChemistrySelect 2:2395–2405

    Article  CAS  Google Scholar 

  42. Chen G, Liu S, Chen S, Qi Z (2001) FTIR spectra, thermal properties, and dispersibility of a polysterene/montmorillonite nanocomposite. Macromol Chem Phys 202:1189–1193

    Article  CAS  Google Scholar 

  43. Liu L, Zhao N, Scherman OA (2008) Ionic liquids as novel guests for cucurbit[6]uril in neutral water. Chem Commun 9:1070

    Article  CAS  Google Scholar 

  44. Miao S, Liu Z, Han B et al (2006) Synthesis and characterization of TiO2–montmorillonite nanocomposites and their application for removal of methylene blue. J Mater Chem 16:579–584

    Article  CAS  Google Scholar 

  45. Karunakaran C, SakthiRaadha S, Gomathisankar P, Vinayagamoorthy P (2013) Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2. RSC Adv 3:16728

    Article  CAS  Google Scholar 

  46. Hafeez HY, Lakhera SK, Karthik P et al (2018) Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl Surf Sci 449:772–779

    Article  CAS  Google Scholar 

  47. Chang J, Ma J, Ma Q et al (2016) Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl Clay Sci 119:132–140

    Article  CAS  Google Scholar 

  48. Xu J, Gao J, Wang W et al (2018) Noble metal-free NiCo nanoparticles supported on montmorillonite/MoS2 heterostructure as an efficient UV–visible light-driven photocatalyst for hydrogen evolution. Int J Hydrog Energy 43:1375–1385

    Article  CAS  Google Scholar 

  49. Okamoto M, Nam PH, Maiti P et al (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1:295–298

    Article  CAS  Google Scholar 

  50. Kelessidis VC (2017) Yield stress of bentonite dispersions. Rheol Open Access 1:1–12

    Google Scholar 

  51. Luo W, Fukumori T, Guo B et al (2017) Effects of grinding montmorillonite and illite on their modification by dioctadecyl dimethyl ammonium chloride and adsorption of perchlorate. Appl Clay Sci 146:325–333

    Article  CAS  Google Scholar 

  52. Mandlimath TR, Gopal B (2011) Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. J Mol Catal A 350:9–15

    Article  CAS  Google Scholar 

  53. Jin XY, Wang F, Cong H, Tao Z (2016) Host–guest interactions of hemicucurbiturils with aminophenols. J Incl Phenom Macrocycl Chem 86:241–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology, Govt. of India (Grant No. EMR/2016/003186, DST/TM/WTI/WIC/2K17/100(G)) and Office of Research and Sponsored Projects, Pandit Deendayal Petroleum University (Grant No. ORSP/R&D/SRP/2017/NAPY & CKPY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Pandey.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 831 kb)

Supplementary material 2 (MP4 5799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, M.U., Patlolla, C.K., Misra, N.M. et al. Cucurbit[6]uril Glued Magnetic Clay Hybrid as a Catalyst for Nitrophenol Reduction. Catal Lett 149, 2355–2367 (2019). https://doi.org/10.1007/s10562-019-02853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02853-0

Keywords

Navigation