Grafted Polyethylene Glycol–Graphene Oxide as a Novel Triphase Catalyst for Carbenes and Nucleophilic Substitution Reactions

  • Xiaohai Yang
  • Jie Zhai
  • Tongchun Xu
  • Bing Xue
  • Jie Zhu
  • Yongxin LiEmail author


Separation and reusability had been main problems for the using of polyethylene glycol (PEG) as phase transfer catalysts (PTCs). To solve these problems, PEG was firstly and successfully grafted on graphene oxide (GO) using BF3·C2H5OC2H5 as Lewis acid catalyst. The solid GO-PEG composites were systemically investigated by characterization techniques (TG, FT-IR, XPS, ICP-AES etc.) and then applied to some carbenes and nucleophilic substitution reactions as novel triphase catalysts. As the results, GO-PEG showed not only equally excellent catalytic activity (≥ 93% yield of 7,7-dichlorobicyclo[4.1.0]heptane and iodooctane) but also incomparable reusability (≥ 85% yield of iodooctane after using for four times) in comparison with traditional PTCs (PEG).

Graphic Abstract


Polyethylene glycol Graphene oxide Triphase catalyst Carbenes reaction Nucleophilic substitution 



This research is supported by the National Natural Science Foundation of China (21673024).


  1. 1.
    Regen SL (1977) J Org Chem 42:875–879CrossRefGoogle Scholar
  2. 2.
    Murugan E, Gopinath P (2009) J Mol Catal A 309:12–20CrossRefGoogle Scholar
  3. 3.
    Feu KS, de la Torre AF, Silva S, Moraes Junior MAF, Corrêa AG, Paixão MW (2014) Green Chem 16:3169–3174CrossRefGoogle Scholar
  4. 4.
    Yang ZZ, Zhao YN, He LN, Gao J, Yin ZS (2012) Green Chem 14:519–527CrossRefGoogle Scholar
  5. 5.
    Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Green Chem 7:64–82CrossRefGoogle Scholar
  6. 6.
    Gao B, Zhuang R, Guo J (2010) AIChE J 56:729–736CrossRefGoogle Scholar
  7. 7.
    Kiasat AR, Badri R, Zargar B, Sayyahi S (2008) J Org Chem 73:8382–8385CrossRefGoogle Scholar
  8. 8.
    Zhang W, Zhao Q, Liu T, Gao Y, Li Y, Zhang G, Zhang F, Fan X (2014) Ind Eng Chem Res 53:1437–1441CrossRefGoogle Scholar
  9. 9.
    Dhakshinamoorthy A, Alvaro M, Concepción P, Fornés V, Garcia H (2014) Chem Commun 48:5443–5445CrossRefGoogle Scholar
  10. 10.
    Xu J, Xu M, Wu J, Wu H, Zhang WH, Li YX (2015) RSC Adv 5:72361–72368CrossRefGoogle Scholar
  11. 11.
    Xue B, Liang XY, Liu N, Xu TC, Xu J, Li YX (2018) Colloids Surf A 538:534–541CrossRefGoogle Scholar
  12. 12.
    He D, Tang H, Kou Z, Pan M, Sun X, Zhang J, Mu S (2017) Adv Mater 29:1601741CrossRefGoogle Scholar
  13. 13.
    He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312–319CrossRefGoogle Scholar
  14. 14.
    He D, Jiang Y, Lv H, Pan M, Mu S (2013) Appl Catal B 132–133:379–388CrossRefGoogle Scholar
  15. 15.
    Lei M, Wang ZB, Li JS, Tang HL, Liu WJ, Wang YG (2014) Sci Rep UK 4:7415CrossRefGoogle Scholar
  16. 16.
    Wang J, Kondrat SA, Wang Y, Brett GL, Giles C, Bartley JK, Lu L, Liu Q, Kiely CJ, Hutchings GJ (2015) ACS Catal 5:3575–3587CrossRefGoogle Scholar
  17. 17.
    Mallakpour S, Abdolmaleki A, Karshenas A (2017) Catal Commun 92:109–113CrossRefGoogle Scholar
  18. 18.
    Hong C, Jin X, Totleben J, Lohrman J, Harak E, Subramaniam B, Chaudhari RV, Ren SQ (2014) J Mater Chem A 2:7147–7151CrossRefGoogle Scholar
  19. 19.
    Baj S, Siewniak A (2007) Appl Catal A 321:175–179CrossRefGoogle Scholar
  20. 20.
    Liu X, Zhao X, Lu M (2013) Appl Organometal Chem 27:615–618Google Scholar
  21. 21.
    Zucchi C, Pa’lyi G (1996) Organometallics 15:3222–3231CrossRefGoogle Scholar
  22. 22.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814CrossRefGoogle Scholar
  23. 23.
    Liu Z, Zhou H, Huang Z, Wang W, Zeng F, Kuang Y (2013) J Mater Chem A 1:3454–3462CrossRefGoogle Scholar
  24. 24.
    Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) J Mater Chem 19:4632–4638CrossRefGoogle Scholar
  25. 25.
    Sun K, Kou Y, Zheng H, Liu X, Tan Z, Shi Q (2018) Sol Energy Mater Sol C 178:139–145CrossRefGoogle Scholar
  26. 26.
    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A et al (2009) Phys Rev Lett 103:226803–226806CrossRefGoogle Scholar
  27. 27.
    Subrahmanyam K, Vivekchand S, Govindaraj A, Rao C (2008) J Mater Chem 18:1517–1523CrossRefGoogle Scholar
  28. 28.
    Liu F, Sun J, Zhu L, Meng X, Qi C, Xiao FS (2018) J Mater Chem 134:316–325Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaohai Yang
    • 1
  • Jie Zhai
    • 1
  • Tongchun Xu
    • 1
  • Bing Xue
    • 1
  • Jie Zhu
    • 1
  • Yongxin Li
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations