Skip to main content
Log in

Lithium Doping Y2O3: A Highly Efficient Solid Base Catalyst for Biodiesel Synthesis with Excellent Water Resistance and Acid Resistance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of nLi–Y2O3 catalysts with different proportion of lithium oxide were prepared by wet impregnation method, the 0.1Li–Y2O3 catalyst exhibited highly efficient catalytic activity in biodiesel synthesis. The as-prepared catalysts were characterized by XRD, SEM, TEM, CO2–TPD and XPS techniques. The results indicated that the significant change in the basicity of Y2O3 with the addition of Li was attributed to the strong interaction produced by electron transfer between the components of the 0.1Li–Y2O3 catalyst and the distortion areas formed at the interface of crystal grains (grain boundaries) in Y2O3 nanocrystals. The load of lithium enhanced electron pair donating ability of the surface oxygen atom which made the catalyst easier to capture H+ from CH3OH, and promoted the yield of biodiesel eventually. At the same time, the experiment verified that the catalyst had outstanding reusability and universality on transesterification of different oils into biodiesel. When the acid value was 8.1 mg KOH/g, the yield of biodiesel still exceeded 80%. Furthermore, the yield of biodiesel was maintained above 90% after adding 2 wt% of water to palm oil, which indicated that 0.1Li–Y2O3 catalyst had good water resistance. The 0.1Li–Y2O3 catalyst was believed as an exceptional competitive catalyst for future commercial biodiesel production applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marwaha A, Rosha P, Mohapatra SK, Mahla SK, Dhir A (2018) Fuel Process Technol 181:175–186

    Article  CAS  Google Scholar 

  2. Wang S, Shan R, Wang Y, Lu L, Yuan H (2019) Renew Energy 130:41–49

    Article  CAS  Google Scholar 

  3. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916

    Article  CAS  PubMed  Google Scholar 

  4. Souza RD, Vats T, Chattree A, Siril PF (2018) Catal Lett 148:2848–2855

    Article  CAS  Google Scholar 

  5. Ngu TA, Li Z (2014) Green Chem 16:1202–1210

    Article  CAS  Google Scholar 

  6. Teo SH, Islam A, Yusaf T, Yun TY (2014) Energy 78:63–71

    Article  CAS  Google Scholar 

  7. Antonio DC, Amancio LP, Rosset IG (2018) Catal Lett 148:3214–3222

    Article  CAS  Google Scholar 

  8. Yang XX, Wang YT, Yang YT, Feng EZ, Luo J, Zhang F, Yang WJ, Bao GR (2018) Energy Convers Manag 164:112–121

    Article  CAS  Google Scholar 

  9. Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Fuel Process Technol 129:147–155

    Article  CAS  Google Scholar 

  10. Narkhede N, Singh S, Patel A (2015) Green Chem 17:89–107

    Article  CAS  Google Scholar 

  11. Todorović ZB, Troter DZ, Đokić-Stojanović DR, Veličković AV, Avramović JM, Stamenković OS, Veselinović LM, Veljković VB (2019) Fuel 237:903–910

    Article  CAS  Google Scholar 

  12. Rabie AM, Shaban M, Abukhadra MR, Hosny R, Ahmed SA, Negm NA (2019) J Mol Liq 279:224–231

    Article  CAS  Google Scholar 

  13. Prabu M, Manikandan M, Kandasamy P, Kalaivani PR, Rajendiran N, Raja T (2019) ACS Omega 4:3500–3507

    Article  CAS  Google Scholar 

  14. Du L, Ding S, Li Z, Lv E, Lu J, Ding J (2018) Energy Convers Manag 173:728–734

    Article  CAS  Google Scholar 

  15. Ayodeji AA, Modupe OE, Rasheed B, Ayodele JM (2018) Data Br 19:1466–1473

    Article  Google Scholar 

  16. Deboni TM, Hirata GAM, Shimamoto GG, Tubino M, Meirelles AJdA (2018) Chem Eng J 333:686–696

    Article  CAS  Google Scholar 

  17. Salimi Z, Hosseini SA (2019) Fuel 239:1204–1212

    Article  CAS  Google Scholar 

  18. Rezayan A, Taghizadeh M (2018) Process Saf Environ Prot 117:711–721

    Article  CAS  Google Scholar 

  19. Qin F, Nohair B, Shen W, Xu H, Kaliaguine S (2016) Catal Lett 146:1273–1282

    Article  Google Scholar 

  20. Shi M, Zhang P, Fan M, Jiang P, Dong Y (2017) Fuel 197:343–347

    Article  CAS  Google Scholar 

  21. Bet-Moushoul E, Farhadi K, Mansourpanah Y, Nikbakht AM, Molaei R, Forough M (2016) Fuel 164:119–127

    Article  CAS  Google Scholar 

  22. Kouzu M, Fujimori A, Suzuki T, Koshi K, Moriyasu H (2017) Fuel Process Technol 165:94–101

    Article  CAS  Google Scholar 

  23. Banković-Ilić IB, Miladinović MR, Stamenković OS, Veljković VB (2017) Renew Sustain Energy Rev 72:746–760

    Article  CAS  Google Scholar 

  24. Alsharifi M, Znad H, Hena S, Ang M (2017) Renew Energy 114:1077–1089

    Article  CAS  Google Scholar 

  25. Maleki H, Kazemeini M, Larimi AS, Khorasheh F (2017) J Ind Eng Chem 47:399–404

    Article  CAS  Google Scholar 

  26. Lu H, Yu X, Shuang Y, Yang H, Tu ST (2016) Fuel 165:215–223

    Article  CAS  Google Scholar 

  27. Shen Y, Li F, Liu Z, Wang H, Shen J (2018) J Energy Inst. https://doi.org/10.1016/j.joei.2018.08.005

    Article  Google Scholar 

  28. Amini G, Najafpour GD, Rabiee SM, Ghoreyshi AA (2013) Chem Eng Technol 36:1708–1712

    CAS  Google Scholar 

  29. Khayoon MS, Hameed BH (2013) Appl Catal A 460–461:61–69

    Article  CAS  Google Scholar 

  30. Miguel LR, Ulberth-Buchgraber M, Held A (2014) J Chromatogr A 1338:127–135

    Article  CAS  Google Scholar 

  31. Song X, Wu Y, Cai F, Pan D, Xiao G (2017) Appl Catal A 532:77–85

    Article  CAS  Google Scholar 

  32. Diez VK, Apesteguia CR, Di Cosimo JI (2006) J Catal 240:235–244

    Article  CAS  Google Scholar 

  33. Teo SH, Islam A, Ng FL, Taufiq-Yap YH (2015) RSC Adv 5:47140–47152

    Article  CAS  Google Scholar 

  34. Wen Z, Yu X, Tu ST, Yan J, Dahlquist E (2010) Appl Energy 87:743–748

    Article  CAS  Google Scholar 

  35. Berger T, Schuh J, Sterrer M, Diwald O, Knözinger E (2007) J Catal 247:61–67

    Article  CAS  Google Scholar 

  36. GonçAlves AM, Lima-Corrêa RAB, Assaf JM, Nogueira ARA (2017) Catal Today 279:177–186

    Article  CAS  Google Scholar 

  37. Xie Y, Wang L, Liu B, Zhu L, Shi S, Wang X (2018) Mater Des 160:918–925

    Article  CAS  Google Scholar 

  38. Vidruk R, Landau MV, Herskowitz M, Talianker M, Frage N, Ezersky V, Froumin N (2009) J Catal 263:196–204

    Article  CAS  Google Scholar 

  39. Puna JF, Gomes JF, Bordado JC, Correia MJN, Dias APS (2014) Appl Catal A 470:451–457

    Article  CAS  Google Scholar 

  40. Kondawar SE, Potdar AS, Rode CV (2015) RSC Adv 5:16452–16460

    Article  CAS  Google Scholar 

  41. Wu Y, Song X, Cai F, Xiao G (2017) J Alloys Compd 720:360–368

    Article  CAS  Google Scholar 

  42. Radvanyi E, Vito ED, Porcher W, Larbi SJS (2014) J Anal At Spectrom 29:1120–1131

    Article  CAS  Google Scholar 

  43. Yu P, Zhang K, Huang H, Mao W, Li Q, Zhang W, Hu C, Zheng W (2017) Appl Surf Sci 410:470–478

    Article  CAS  Google Scholar 

  44. Leng J, Yu Z, Li Y, Zhang D, Liao X, Xue W (2010) Appl Surf Sci 256:5832–5836

    Article  CAS  Google Scholar 

  45. Barve SA, Mithal N, Deo MN, Chand N, Bhanage BM, Gantayet LM, Patil DS (2010) Surf Coat Technol 204(20):3167–3172

    Article  CAS  Google Scholar 

  46. Wen Z, Yu X, Tu S-T, Yan J, Dahlquist E (2010) Appl Energy 87:743–748

    Article  CAS  Google Scholar 

  47. Kim HJ, Kang BS, Kim MJ, Park YM, Kim DK, Lee JS, Lee KY (2004) Catal Today 93:315–320

    Article  CAS  Google Scholar 

  48. Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu D-Y, Yang S (2015) J Ind Eng Chem 31:385–392

    Article  CAS  Google Scholar 

  49. Rattanaphra D, Soodjit P, Thanapimmetha A, Saisriyoot M, Srinophakun P (2019) Renew Energy 131:1128–1137

    Article  CAS  Google Scholar 

  50. Kumar D, Kumar G (2010) Poonam, Singh CP. Ultrason Sonochem 17:555–559

    Article  CAS  PubMed  Google Scholar 

  51. Singh D, Ganesh A, Mahajani S (2015) Clean Technol Environ Policy 17:1103–1110

    Article  CAS  Google Scholar 

  52. Liu Y, Zhang P, Fan M, Jiang P (2016) Fuel 164:314–321

    Article  CAS  Google Scholar 

  53. Tang Y, Li L, Wang S, Cheng Q, Zhang J (2016) Environ Prog Sustain Energy 35:257–262

    Article  CAS  Google Scholar 

  54. Fan M, Liu Y, Zhang P, Jiang P (2016) Fuel Process Technol 149:163–168

    Article  CAS  Google Scholar 

  55. Sun J, Yang J, Li S, Xu X (2016) Catal Commun 83:35–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Key Research and Development Program of Jiangsu Province (Industry Outlook and Common Key Technologies) (Grant No. BE2015204), the National Natural Science Foundation of China (NSFC) (Grant No. 21306063), the Fundamental Research Funds for the Central Universities (Grant No. JUSRP51623A), MOE & SAFEA for the 111 Project (Grant No. B13025) and International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University. We gratefully acknowledged to these funded groups.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingbo Zhang or Mingming Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Chen, X., Yue, C. et al. Lithium Doping Y2O3: A Highly Efficient Solid Base Catalyst for Biodiesel Synthesis with Excellent Water Resistance and Acid Resistance. Catal Lett 149, 2433–2443 (2019). https://doi.org/10.1007/s10562-019-02846-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02846-z

Keywords

Navigation