Skip to main content
Log in

Free-Standing Porous Cu-Based Nanowires as Robust Electrocatalyst for Alkaline Oxygen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu-based catalysts have emerged as important candidates for oxygen evolution reaction (OER) electrocatalysts. Based on Mg72Cu28 alloy ribbon, a free-standing porous Cu hydroxide/oxide nanowires (p-CuNWs) was fabricated by a combined method of chemical dealloying and electrochemical treatment. The structure and chemical state of p-CuNWs were characterized by X-ray diffraction pattern analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The p-CuNWs were identified as mixed Cu(OH)2 and CuO with a high active surface area, which exhibit robust activity for OER in alkaline solution with an overpotential of only 377 mV to offer current density of 50 mA cm−2, small Tafel slope of 85 mV dec−1. The catalytic durability of p-CuNWs was also evaluated by cyclic voltammetry cycles and a small decay of activity was observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  2. Jiao Y, Zheng Y, Jaroniecb M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  Google Scholar 

  3. Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P (2010) The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2:724–761

    Article  CAS  Google Scholar 

  4. Audichon T, Napporn TW, Canaff C, Morais C, Comminges C, Kokoh KB (2016) IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. J Phys Chem C 120:2562–2573

    Article  CAS  Google Scholar 

  5. Joya KS, Ehsan MA, Babar NA, Sohail M, Yamani ZH (2019) Nanoscale palladium as a new benchmark electrocatalyst for water oxidation at low overpotential. J Mater Chem A 7:9137–9144

    Article  CAS  Google Scholar 

  6. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang XX, Silva R, Zou XX, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811

    Article  CAS  PubMed  Google Scholar 

  7. Decan MR, Impellizzeri S, Marin ML, Scaiano JC (2014) Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat Commun 5:4612

    Article  CAS  PubMed  Google Scholar 

  8. Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J (2014) Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys 16:12194–12201

    Article  CAS  PubMed  Google Scholar 

  9. Wu NL, Lee MS (2004) Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrogen Energy 29:1601–1605

    Article  CAS  Google Scholar 

  10. Barnett SM, Goldberg KI, Mayer JM (2012) A soluble copper-bipyridine water-oxidation electrocatalyst. Nat Chem 4:498–502

    Article  CAS  PubMed  Google Scholar 

  11. Zhang MT, Chen ZF, Kang P, Meyer TJ (2013) Electrocatalytic water oxidation with a copper(II) polypeptide complex. J Am Chem Soc 135:2048–2051

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Jia HX, Sun ZJ, Chen HY, Xu P, Du PW (2014) Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem Commun 46:1–4

    Article  CAS  Google Scholar 

  13. Du JL, Chen ZF, Ye SR, Wiley BJ, Meyer TJ (2015) Copper as a robust and transparent electrocatalyst for water oxidation. Angew Chem Int Ed 54:2073–2078

    Article  CAS  Google Scholar 

  14. Liu X, Cui SS, Sun ZJ, Du PW (2015) Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim Acta 160:202–208

    Article  CAS  Google Scholar 

  15. Cui SS, Liu X, Sun ZJ, Du PW (2016) Noble metal-free copper hydroxide as an active and robust electrocatalyst for water oxidation at weakly basic pH. ACS Sustain Chem. Eng. 4:2593–2600

    Article  CAS  Google Scholar 

  16. Joya KS, Groot HJM (2016) Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation. ACS Catal 6:1768–1771

    Article  CAS  Google Scholar 

  17. Pawar SM, Pawar BS, Hou B, Kim J, Ahmed ATA, Chavan HS, Jo Y, Cho S, Inamdar AI, Gunjakar JL, Kim H, Cha S, Im H (2017) Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J Mater Chem A 5:12747–12751

    Article  CAS  Google Scholar 

  18. Cheng NY, Xue YR, Liu Q, Tian JQ, Zhang LX, Asiri AM, Sun XP (2015) Cu/(Cu(OH)2-CuO) core/shell nanorods array: in situ growth and application as an efficient 3D oxygen evolution anode. Electrochim Acta 163:102–106

    Article  CAS  Google Scholar 

  19. Hou CC, Fu WF, Chen Y (2016) Self-supported Cu-based nanowire arrays as noble-metal free electrocatalysts for oxygen evolution. ChemSusChem 9:1–6

    Article  CAS  Google Scholar 

  20. Huan TN, Rousse G, Zanna S, Lucas IT, Xu XZ, Menguy N, Mougel V, Fontecave M (2017) A dendritic nanostructured copper oxide electrocatalyst for the oxygen evolution reaction. Angew Chem Int Ed 56:4792–4796

    Article  CAS  Google Scholar 

  21. Xu H, Feng JX, Tong YX, Li GR (2017) Cu2O-Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Catal 7:986–991

    Article  CAS  Google Scholar 

  22. Zhang BW, Li CJ, Yang G, Huang K, Wu JS, Li Z, Cao X, Peng DD, Hao SJ, Huang YZ (2018) Nanostructured CuO/C hollow shell@3D copper dendrites as a highly efficient electrocatalyst for oxygen evolution reaction. ACS Appl Mater Interfaces 10:23807–23812

    Article  CAS  PubMed  Google Scholar 

  23. Ren X, Ji XQ, Wei YC, Wu D, Zhang Y, Ma M, Liu ZA, Asiri AM, Wei Q, Sun XP (2018) In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction. Chem Commun 54:1425–1428

    Article  CAS  Google Scholar 

  24. Wu JX, He CT, Li GR, Zhang JP (2018) An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu-C hybrid nanorod arrays for an efficient oxygen evolution reaction. J Mater Chem A 6:19176–19181

    Article  CAS  Google Scholar 

  25. Xiong XL, You C, Liu ZA, Asiri AM, Sun XP (2018) Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustain Chem Eng 6:2883–2887

    Article  CAS  Google Scholar 

  26. Ding Y, Chen MW, Erlebacher J (2014) Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc 126:6876–6877

    Article  CAS  Google Scholar 

  27. Chen Q, Ding Y, Chen MW (2018) Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull 43:43–48

    Article  CAS  Google Scholar 

  28. Lu Q, Hutchings GS, Yu WT, Zhou Y, Forest RV, Tao RZ, Rosen J, Yonemoto BT, Cao ZY, Zheng HM, Xiao JQ, Jiao F, Chen JG (2015) Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat Commun 6:6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li YX, Ge XB, Wang LDY, Liu J, Wang Y, Feng LX (2017) A free standing porous Co/Mo architecture as a robust bifunctional catalyst toward water splitting. RSC Adv 7:11568–11571

    Article  CAS  Google Scholar 

  30. Zhang JT, Liu PP, Ma HY, Ding Y (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 28:10382–10388

    Article  CAS  Google Scholar 

  31. Xu CX, Wang RY, Chen MW, Zhang Y, Ding Y (2010) Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties. Phys Chem Chem Phys 12:239–246

    Article  CAS  PubMed  Google Scholar 

  32. Ding Y, Chen MW (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34:569–576

    Article  CAS  Google Scholar 

  33. Tan YW, Wang H, Liu P, Shen YH, Cheng C, Hirata A, Fujita T, Tang Z, Chen MW (2016) Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ Sci 9:2257–2261

    Article  CAS  Google Scholar 

  34. Liang FL, Yu Y, Zhou W, Xu XY, Zhu ZH (2015) Highly defective CeO2 as a promoter for efficient and stable water oxidation. J Mater Chem A 3:634–640

    Article  CAS  Google Scholar 

  35. Akhavan O, Azimirad R, Safa S, Hasani E (2011) CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J Mater Chem 21:9634–9640

    Article  CAS  Google Scholar 

  36. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM (2004) Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J Phys Chem B 108:17825–17831

    Article  CAS  Google Scholar 

  37. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  38. Deroubaix G, Marcus P (1992) X-ray photoelectron spectroscopy analysis of copper and zinc oxides and sulphides. Surf Interface Anal 18:39–46

    Article  CAS  Google Scholar 

  39. Marshall AT, Vaisson-Béthune L (2015) Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem Commun 61:23–26

    Article  CAS  Google Scholar 

  40. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  41. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3:1159–1165

    Article  CAS  Google Scholar 

  42. Handoko AD, Deng SZ, Deng YL, Cheng AWF, Chan KW, Tan HR, Pan YL, Tok ES, Sow CH, Yeo BS (2016) Enhanced activity of H2O2-treated copper(II) oxide nanostructures for the electrochemical evolution of oxygen. Catal Sci Technol 6:269–274

    Article  Google Scholar 

  43. Deng YL, Handoko AD, Du YH, Xi SB, Yeo BS (2016) In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species. ACS Catal. 6:2473–2481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21403174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingbo Ge or Ling Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ge, X., Wang, Z. et al. Free-Standing Porous Cu-Based Nanowires as Robust Electrocatalyst for Alkaline Oxygen Evolution Reaction. Catal Lett 149, 2376–2382 (2019). https://doi.org/10.1007/s10562-019-02834-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02834-3

Keywords

Navigation