Skip to main content
Log in

Design and Synthesis of Novel Cage like CuFe2O4 Hollow Nanostructure as an Efficient Catalyst for Synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cage like CuFe2O4 hollow nanostructure has been synthesized successfully using hard template method under the hydrothermal condition. Cu(NO3)2·6H2O, Fe(NO3)2·9H2O and glucose were dissolved in water, and the mixture was heated to 180 °C in an autoclave. The removal of carbon was achieved by calcination at 800 °C and finally, the cage like CuFe2O4 hollow structure was obtained. This cage like CuFe2O4 hollow structure was characterized by FE-SEM, EDS, TEM and XRD. The catalytic performance of this hollow nanostructure was evaluated for the synthesis of bis pyrazol-5-ols. To this end, the one pot condensation reactions of phenylhydrazine, ethyl acetoacetate and different aromatic aldehyde at 80 °C under the solvent free condition were performed. The optimum amount of applied catalyst for this transformation was obtained to be 0.04 mol %. Noteworthy, catalyst was easily recoverable and was reused for 7 times with the remaining of its initial structure as well as its catalytic activity.

Graphical Abstract

Cage like CuFe2O4 hollow nanostructure are stably and efficiently attainable for conversion of precursors to 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tangcharoen T, Klysubun W, Kongmark C, Pecharapa W (2014) Phys Status Solidi A 211:1903

    Article  CAS  Google Scholar 

  2. Gimenes R, Baldissera MD, Da Silva MR, Da Silveira CA, Soares DA, Perazolli LA, Da Silva MR, Zaghete MA (2012) Ceram Int 38:741

    Article  CAS  Google Scholar 

  3. Prabhakaran T, Hemalatha J (2011) J Alloys Compd 509:7071

    Article  CAS  Google Scholar 

  4. Azizi A, Sadrnezhaad SK (2010) Ceram Int 36:2241

    Article  CAS  Google Scholar 

  5. Si C, Zhang Y, Zhang C, Gao H, Ma W, Lv L, Zhang Z (2017) Electrochim Acta 245:829

    Article  CAS  Google Scholar 

  6. Zeng H, Rice PM, Wang SX, Sun S (2004) J Am Chem Soc 126:11458

    Article  CAS  PubMed  Google Scholar 

  7. Qian HS, Hu Y, Li ZQ, Yang XY, Li LC, Zhang XT, Xu R (2010) J Phys Chem C 114:17455

    Article  CAS  Google Scholar 

  8. Du N, Xu Y, Zhang H, Zhai C, Yang D (2010) Nanoscale Res Lett 5:1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U (2006) Nat Mater 5:627

    Article  CAS  PubMed  Google Scholar 

  10. Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang GH, Schüth F (2016) Chem Rev 116:14056

    Article  CAS  PubMed  Google Scholar 

  11. Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E (2001) Sens Actuators B Chem 76:299

    Article  CAS  Google Scholar 

  12. Choi HJ, Cho MS, Kang KK, Ahn WS (2000) Microporous Mesoporous Mater 39:19

    Article  CAS  Google Scholar 

  13. Bach U, Lupo D, Comte P, Moser JE, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Nature 1395:583

    Article  CAS  Google Scholar 

  14. Grätzel M (2001) Pure Appl Chem 73:459

    Article  Google Scholar 

  15. Chen QW, Bahnemann DW (2000) J Am Chem Soc 122:970

    Article  CAS  Google Scholar 

  16. McDonald E, Jones K, Brough PA, Drysdale MJ, Workman P (2006) Curr Top Med Chem 16:1193

    Article  Google Scholar 

  17. Perez-Fernández R, Goya P, Elguero J (2014) ARKIVOC (ii) 233

  18. Wiley RH, Behr LC (1967) Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed ring. John Wiley & sons, New Jersey

    Book  Google Scholar 

  19. Sugiura S, Ohno S, Ohtani O, Izumi K, Kitamikado T, Asai H, Kato K, Hori M, Fujimura H (1977) J Med Chem 20:80

    Article  CAS  PubMed  Google Scholar 

  20. Prakash O, Kumar R, Parkash V (2008) Eur J Med Chem 43:435

    Article  CAS  PubMed  Google Scholar 

  21. Antre RV, Cendilkumar A, Nagarajan RR, Goli D, Oswal RJ (2012) J Sci Res 4:183

    Article  CAS  Google Scholar 

  22. Kappe CO (2000) Eur J Med Chem 35:1043

    Article  CAS  PubMed  Google Scholar 

  23. Hasaninejad A, Shekouhy M, Zare A, Ghattali SH, Golzar N (2011) J Iran Chem Soc 8:411

    Article  CAS  Google Scholar 

  24. Singh D, Singh D (1984) J Chem Eng Data 29:355

    Article  CAS  Google Scholar 

  25. Shi DQ, Chen J, Wu N, Zhuang QY, Wang XS (2005) Chin J Org Chem 25:405

    CAS  Google Scholar 

  26. Karimi-Jaberi Z, Pooladian B, Moradi M, Ghasemi E (2012) Chin J Catal 33:1945

    Article  CAS  Google Scholar 

  27. Gouda MA, Abu-Hashem AA (2012) Green Chem Lett Rev 5:203

    Article  CAS  Google Scholar 

  28. Sujatha K, Shanthi G, Selvam NP, Manoharan S, Perumal PT, Rajendran M (2009) Bioorg Med Chem Lett 19:4501

    Article  CAS  PubMed  Google Scholar 

  29. Baghernejad M, Niknam K (2012) Int J Chem 4:52

    Article  CAS  Google Scholar 

  30. Niknam K, Saberi D, Sadegheyan M, Deris A (2010) Tetrahedron Lett 51:692

    Article  CAS  Google Scholar 

  31. Zarghani M, Akhlaghinia B (2015) RSC Adv 5:87769

    Article  CAS  Google Scholar 

  32. Jahanshahi R, Akhlaghinia B (2017) Chem Pap 71:1351

    Article  CAS  Google Scholar 

  33. Safaiee M, Zolfigol MA, Derakhshan-Panah F, Khakyzadeh V, Mohammadi L (2016) Croat Chem Acta 89:317

    Article  CAS  Google Scholar 

  34. Zolfigol MA, Ayazi-Nasrabadi R, Baghery S (2015) RSC Adv 5:71942

    Article  CAS  Google Scholar 

  35. Chen Z, Cui ZM, Niu F, Jiang L, Song WG (2010) Chem Commun 46:6524

    Article  CAS  Google Scholar 

  36. Li Y, Zhou P, Dai Z, Hu Z, Sun P, Bao J (2006) New J Chem 30:832

    Article  CAS  Google Scholar 

  37. Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H, Kuwabata S, Torimoto T, Matsumura M (2006) Angew Chem Int Ed 45:7063

    Article  CAS  Google Scholar 

  38. Rajabzadeh M, Eshghi H, Khalifeh R, Bakavoli M (2018) Appl Organomet Chem 32:e4052

    Article  CAS  Google Scholar 

  39. Rajabzadeh M, Eshghi H, Khalifeh R, Bakavoli M (2016) RSC Adv 6(23):19331–19340

    Article  CAS  Google Scholar 

  40. Rajabzadeh M, Eshghi H, Khalifeh R, Bakavoli M (2017) Appl Organomet Chem 31:e3647

    Article  CAS  Google Scholar 

  41. Sharghi H, Jokar M, Doroodmand MM, Khalifeh R (2010) Adv Synth Catal 352:3031

    Article  CAS  Google Scholar 

  42. Sharghi H, Khalifeh R (2007) Heterocycles 71:1601

    Article  CAS  Google Scholar 

  43. Sharghi H, Khalifeh R (2008) Can J Chem 86:426

    Article  CAS  Google Scholar 

  44. Khalifeh R, Sharghi H, Rashidi Z (2013) Heteroatom Chem 24:372

    Article  CAS  Google Scholar 

  45. Khalifeh R, Ghamari M (2016) J Braz Chem Soc 27:759

    CAS  Google Scholar 

  46. Sharghi H, Khalifeh R, Mansouri SG, Aberi M, Eskandari MM (2011) Catal Lett 141:1845

    Article  CAS  Google Scholar 

  47. Rajabzadeh M, Khalifeh R, Eshghi H, Sorouri M (2019) Catal Lett 149:1125

    Article  CAS  Google Scholar 

  48. Khalifeh R, Karimzadeh F (2019) Can J Chem 97:303

    Article  CAS  Google Scholar 

  49. Rezaei F, Amrollahi MA, Khalifeh R (2019) Inorganica Chim Acta 489:8

    Article  CAS  Google Scholar 

  50. Sun X, Li Y (2004) Angew Chem Int Ed 43:597

    Article  CAS  Google Scholar 

  51. Wang W, Wang SX, Qin XY, Li JT (2005) Synth Commun 35:1263

    Article  CAS  Google Scholar 

  52. Hasaninejed A, Kazerooni MR, Zare A (2013) ACS Sustain Chem Eng 1:679

    Article  CAS  Google Scholar 

  53. Zhou Z, Zhang Y (2014) Green Chem Lett Rev 7:18

    Article  CAS  Google Scholar 

  54. Niknam K, Mirzaee S (2011) Synth Commun 41:2403

    Article  CAS  Google Scholar 

  55. Tayebi S, Niknam K (2012) Iran J Catal 2:69

    CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the support of this work by the Shiraz University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khalifeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifeh, R., Shahimoridi, R. & Rajabzadeh, M. Design and Synthesis of Novel Cage like CuFe2O4 Hollow Nanostructure as an Efficient Catalyst for Synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s. Catal Lett 149, 2864–2872 (2019). https://doi.org/10.1007/s10562-019-02818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02818-3

Keywords

Navigation