Skip to main content
Log in

Vapour Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol Over Cu–Cr–Zn Mixed Oxide Catalysts Prepared by Utilizing Gamma Radiation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective hydrogenation of furfural to furfuryl alcohol was evaluated over Cu–Cr–Zn mixed oxide catalysts prepared by conventional and gamma radiation methods. The catalysts were characterized by different techniques. The variations in surface-structural properties of the catalysts prepared by gamma radiation compared with that of conventional catalysts. Conventional reduction prior to hydrogenation reaction is not required for the catalysts prepared by gamma radiation method. The gamma radiated catalysts showed higher hydrogenation activity compared to the conventional catalysts. The hydrogenation ability of the catalysts is attributed to Cu metal surface area, dispersion and Cr content. The catalyst with 0.4 molar percentage in Cu/ZnO exhibited highest furfural conversion of 84% with 100% selectivity. All possible reaction parameters were also assessed and optimized reaction conditions were established.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Faba L, Diaz E, Ordonez S (2011) Catal Today 164:451

    Article  CAS  Google Scholar 

  2. Lange JP, vander Heide E, vander Buijtenen J, Price R (2012) Chem Sus Chem 5:150

    Article  CAS  Google Scholar 

  3. Reddy BM, Reddy Rao GK, Rao KN, Khan A, Ganesh I (2007) J Mol Catal A 265:276

    Article  CAS  Google Scholar 

  4. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  PubMed  Google Scholar 

  5. Nagaraja BM, Padmasri AH, Raju BD, Rao KS (2007) J Mol Catal A 265:90

    Article  CAS  Google Scholar 

  6. Wu J, Shen Y, Liu C, Wang H, Geng C, Zhang Z (2005) Catal Commun 6:633

    Article  CAS  Google Scholar 

  7. Sharma RV, Das U, Sammynaiken R, Dalai AK (2013) Appl Catal A 454:127

    Article  CAS  Google Scholar 

  8. Yan K, Jarvis C, Lafleur T, Qiao YX, Xie XM (2013) RSC Adv 3:25865

    Article  CAS  Google Scholar 

  9. Mandalika A, Qin L, Sato TK, Runge T (2014) Green Chem 16:2480

    Article  CAS  Google Scholar 

  10. Luo HS, Li HI, Zhuang L (2001) Chem Lett 30:404–405

    Article  Google Scholar 

  11. Vaidya PD, Mahajani VV (2003) Ind Eng Chem Res 42:3881

    Article  CAS  Google Scholar 

  12. Sitthisa S, Pham T, Prasomsri T, Sooknoi T, Mallinson RG, Resasco DE (2011) J Catal 280:17

    Article  CAS  Google Scholar 

  13. Sitthisa S, An W, Resasco DE (2011) J Catal 284:90

    Article  CAS  Google Scholar 

  14. Zheng LK, Xu CH, Liang WB, Liu JY, Liu J, Dun XJ, Guo Y, Yang YC (2010) J Catal 31:461

    CAS  Google Scholar 

  15. Sitthisa S, Resasco DE (2011) Catal Lett 141:784

    Article  CAS  Google Scholar 

  16. Sitthisa S, An W, Resasco DE (2011) J Catal 294:90

    Article  CAS  Google Scholar 

  17. Sarkany A, Papp Z, Sajo I, Schay Z (2005) Solid State Ionics 176:209

    Article  CAS  Google Scholar 

  18. Moser W (1996) Advanced Catalysts and Nano structured Materials. Academic Press, San Diego

    Google Scholar 

  19. Bonnemann H, Richards R (2003) Encycl Catal 2:595

    Google Scholar 

  20. Brandt B, Schalow T, Laurin M, Schauermann S, Libuda J, Freund HJ (2007) J Phys Chem C 111:938

    Article  CAS  Google Scholar 

  21. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 22:1239

    Article  CAS  Google Scholar 

  22. Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:8304

    Article  Google Scholar 

  23. Vinod Kumar J, Lingaiah N, Rama Rao KS, Ramnani SP, Sabharwal S, Sai Prasad PS (2009) Catal Commun 10:1149

    Article  CAS  Google Scholar 

  24. Balaraju M, Jagadeeswaraiah K, Prasad PSS, Lingaiah N (2012) Catal Sci Technol 2:1967

    Article  CAS  Google Scholar 

  25. Van Der Grift CJG, Wielers AFH, Jogh BPJ, Van Beunum J, De Boer M, Versluijs-Helder M, Geus JW (1991) J Catal 131:178

    Article  Google Scholar 

  26. Nagaraja BM, Kumar VS, Shasikala V, Padmasri AH, Sreedhar B, Raju BD, Rao KSR (2003) Catal Commun 4:287

    Article  CAS  Google Scholar 

  27. Brigs D, Seah MP (eds) (1983) Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Wiley, New York

    Google Scholar 

  28. Tamura Masazumi, Tokonami Kensuke, Nakagawa Yoshinao, Tomishige Keiichi (2013) Chem Commun 49:7034

    Article  CAS  Google Scholar 

  29. Liu D, Zemlyanov D, Wu T, Lobo-Lapidus RJ, Dumesic JA, Miller JT, Christopher LM (2013) J Catal 299:336

    Article  CAS  Google Scholar 

  30. Jiménez-Gómez CP, Cecilia JA, Durán-Martín D, Moreno-Tost R, Santamaría-González J, Mérida-Robles J, Mariscal R, Maireles-Torres P (2016) J Catal 336:107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to BRNS, Mumbai for financial support to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lingaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, G.S., Rekha, V., Francis, S. et al. Vapour Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol Over Cu–Cr–Zn Mixed Oxide Catalysts Prepared by Utilizing Gamma Radiation. Catal Lett 149, 2758–2766 (2019). https://doi.org/10.1007/s10562-019-02815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02815-6

Keywords

Navigation