Skip to main content
Log in

Adsorption and Photodegradation of Acetaldehyde and Ethylene on TiO2 (001) Surface: Experimental and First Principle Studies

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the adsorption and photodegradation of acetaldehyde and ethylene on TiO2 nanoparticles (NPs) with dominant {001} facets were studied. Additionally, the first principle calculation was used to complement the experimental results. TiO2 NPs were synthesized by using a hydrothermal method. The experimental results indicated that adsorption amount of acetaldehyde on TiO2 {001} facets is higher than ethylene, with the initial concentration as 500 ± 10 ppm. Photodegradation efficiency of 88% was achieved for acetaldehyde in contrast to 17% for ethylene at flow rate of 10 sccm. The first principle calculations show that the adsorption energy (Eads) for acetaldehyde is 0.603 eV and that of ethylene is 0.251 eV. This study is imperative for understanding the adsorption and photodegradation process of acetaldehyde and ethylene, two typical VOCs, and helpful to design the photocatalysts with high efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wu M, Leung DYC, Zhang Y et al (2019) Toluene degradation over Mn–TiO2/CeO2 composite catalyst under vacuum ultraviolet (VUV) irradiation. Chem Eng Sci 195:985–994

    Article  CAS  Google Scholar 

  2. Stucchi M, Galli F, Bianchi CL et al (2018) Simultaneous photodegradation of VOC mixture by TiO2 powders. Chemosphere 193:198–206

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Li J, Shi Y et al (2018) Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. J Colloid Interface Sci 528:45–52

    Article  CAS  PubMed  Google Scholar 

  4. Jafari AJ, Kalantary RR, Esrafili A et al (2018) Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene. Process Saf Environ Prot 116:377–387

    Article  CAS  Google Scholar 

  5. Zhou H, Wen Z, Liu J et al (2019) Z-scheme plasmonic Ag decorated WO3/Bi2WO6 hybrids for enhanced photocatalytic abatement of chlorinated-VOCs under solar light irradiation. Appl Catal B 242:76–84

    Article  CAS  Google Scholar 

  6. Saqer SM, Kondarides DI, Verykios XE (2011) Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3. Appl Catal B 103(3):275–286

    Article  CAS  Google Scholar 

  7. Tode R, Ebrahimi A, Fukumoto S et al (2010) Photocatalytic decomposition of water on double-layered visible light-responsive TiO2 thin films prepared by a magnetron sputtering deposition method. Catal Lett 135(1):10–15

    Article  CAS  Google Scholar 

  8. Hogan T, Simpson R, Lin M et al (1996) A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation using dioxygen as the oxidant. Catal Lett 40(1):95–99

    Article  CAS  Google Scholar 

  9. Pratap Reddy M, Phil HH, Subrahmanyam M (2008) Photocatalytic disinfection of Escherichia coli over titanium (IV) oxide supported on Hβ zeolite. Catal Lett 123(1):56

    Article  CAS  Google Scholar 

  10. Ferentz M, Landau MV, Herskowitz M (2018) Relationship of crystals shape, aggregation mode and surface purity in catalytic wet peroxide oxidation of phenol in dark with titania anatase nanocrystals. Catal Lett 148(11):3524–3533

    Article  CAS  Google Scholar 

  11. Pazhamalai P, Krishnamoorthy K, Mariappan VK et al (2019) Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J Colloid Interface Sci 536:62–70

    Article  CAS  PubMed  Google Scholar 

  12. Saltveit ME (1999) Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol 15(3):279–292

    Article  CAS  Google Scholar 

  13. Adel AK (2003) A Perspective on postharvest horticulture (1978–2003). HortScience 38(5):1004–1008

    Article  Google Scholar 

  14. Sawada S, Totsuka T (1967) Natural and anthropogenic sources and fate of atmospheric ethylene. Atmos Environ 20(5):821–832

    Article  Google Scholar 

  15. Fu X, Clark LA, Yang Q et al (1996) Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30(2):647–653

    Article  CAS  Google Scholar 

  16. Fu X, Clark LA, Zeltner WA et al (1996) Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J Photochem Photobiol A 97(3):181–186

    Article  CAS  Google Scholar 

  17. Obee TN, Hay SO (1997) Effects of moisture and temperature on the photooxidation of ethylene on titania. Environ Sci Technol 31(7):2034–2038

    Article  CAS  Google Scholar 

  18. Yamazaki S, Tanaka S, Tsukamoto H (1999) Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. J Photochem Photobiol A 121(1):55–61

    Article  CAS  Google Scholar 

  19. Park D-R, Zhang J, Ikeue K et al (1999) Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O. J Catal 185(1):114–119

    Article  CAS  Google Scholar 

  20. Ghosh D, Smith AR, Walker AB et al (2018) Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem Mater 30(15):5194–5204

    Article  CAS  Google Scholar 

  21. Bianchi CL, Gatto S, Pirola C et al (2014) Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO2. Appl Catal B 146:123–130

    Article  Google Scholar 

  22. Huang H, Leung DYC, Ye D (2011) Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J Mater Chem 21(26):9647–9652

    Article  CAS  Google Scholar 

  23. Lin W, Xie X, Wang X et al (2018) Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst. Chem Eng J 349:708–718

    Article  CAS  Google Scholar 

  24. Pan J, Liu G, Lu GQ et al (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem 123(9):2181–2185

    Article  Google Scholar 

  25. Ren L, Li Y, Hou J et al (2016) The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed 001 facets on photocatalysis for the photocatalytic purification of VOCs. Appl Catal B 181:625–634

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46(11):6671–6687

    Article  CAS  Google Scholar 

  31. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J comput chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Lu C, Ni Y et al (2013) Crystal facet growth behavior and thermal stability of 001 faceted anatase TiO2: mechanistic role of gaseous HF and visible-light photocatalytic activity. CrystEngComm 15(13):2537–2543

    Article  CAS  Google Scholar 

  33. Peng C, Yang X, Li Y et al (2016) Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl Mater Interfaces 8(9):6051–6060

    Article  CAS  PubMed  Google Scholar 

  34. Jian-Feng WAN, D-SH HU, Peng-Hui LU, Bi-Zhou LIN, Yi-Lin CHEN, Bi-Fen GAO (2016) Preparation of anatase TiO2 nanocube with exposed (001) facet and its photocatalytic properties. J Inorg Mater 31(8):845–849

    Article  Google Scholar 

  35. Mao Y, Wong SS (2006) Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. J Am Chem Soc 128(25):8217–8226

    Article  CAS  PubMed  Google Scholar 

  36. Araújo ES, Libardi J, Faia PM et al (2015) Hybrid ZnO/TiO2 loaded in electrospun polymeric fibers as photocatalyst. J Chem 2015:10

    Article  CAS  Google Scholar 

  37. Fonoberov VA, Balandin AA (2004) Interface and confined optical phonons in wurtzite nanocrystals. Phys Rev B 70(23):233205

    Article  CAS  Google Scholar 

  38. Chandra M, Bhunia K, Pradhan D (2018) Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg Chem 57(8):4524–4533

    Article  CAS  PubMed  Google Scholar 

  39. Pan J, Liu G, Lu GQ et al (2011) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 123(9):2181–2185

    Article  Google Scholar 

  40. Sun J, Wang Q, Wang W et al (2018) Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges. Energy 155:815–823

    Article  CAS  Google Scholar 

  41. Liqiang J, Xiaojun S, Jing S et al (2003) Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol Energy Sol Cells 79(2):133–151

    Article  CAS  Google Scholar 

  42. Xing M-Y, Yang B-X, Yu H et al (2013) Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J Phys Chem Lett 4(22):3910–3917

    Article  CAS  Google Scholar 

  43. Araujo-Lopez E, Varilla LA, Seriani N et al (2016) TiO2 anatase’s bulk and (001) surface, structural and electronic properties: a DFT study on the importance of Hubbard and van der Waals contributions. Surf Sci 653:187–196

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful for the financial support under the National Key Research and Development Program of China (2016YFA0203000), CAS President’s International Fellowship Initiative (PIFI) program, NSFC-DFG bilateral organization program (51761135107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Sun.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Mahmood, A., Lu, G. et al. Adsorption and Photodegradation of Acetaldehyde and Ethylene on TiO2 (001) Surface: Experimental and First Principle Studies. Catal Lett 149, 2728–2738 (2019). https://doi.org/10.1007/s10562-019-02813-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02813-8

Keywords

Navigation