Skip to main content
Log in

Porous Alkaline-Earth Doped Multiwall Carbon Nanotubes with Base Catalytic Properties

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Alkaline-earth doped multiwall carbon nanotubes, M-CNT (M = Mg, Ca, Sr, Ba) have been prepared by a combined method of ionic exchange and precipitation. The wide characterization of the solids by nitrogen adsorption, ATR–FTIR, thermal analysis, XRD, scanning electron microscopy, transmission electron microscopy, point of zero charge (PZC), and X-ray photoelectron spectroscopy shows that the incorporation of M to the CNTs has been successfully produced. The doping with the alkaline-earth cations causes a decrease in the SBET value of the raw material, mainly due to the blockage of mesopores by the metal carbonate phase formed in most of cases. This metallic phase also contributes to the destabilization of the nanotubes by promoting their oxidation. According to PZC values, the acid character of oxidized CNTs changes to basic for the M-CNT series, Mg-CNT showing the highest PZC value. The basic properties of the catalysts have been tested in the C–C bond forming reaction of Knoevenagel, by carrying out the condensation of ethyl cyanoacetate with benzaldehyde or 4-methoxybenzaldehyde.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press, New York

    Book  Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  3. O’Connell M (2006) Carbon nanotubes: properties and applications. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  4. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  5. Serp P, Castillejos E (2010) ChemCatChem 2:41

    Article  CAS  Google Scholar 

  6. Melchionna M, Marchesan S, Prato M, Fornasiero P (2015) Catal Sci Technol 5:3859

    Article  CAS  Google Scholar 

  7. Wu X-M, Guo Y-Y, Zhou J-M, Lin G-D, Dong X, Zhang H-B (2008) Appl Catal A 340:87

    Article  CAS  Google Scholar 

  8. Zhang L, Wen G, Liu H, Wang N, Su DS (2014) ChemCatChem 6:2600

    Article  CAS  Google Scholar 

  9. Zhang H, Pan X, Bao X (2013) J Energy Chem 22:251

    Article  Google Scholar 

  10. Pan X, Bao X (2011) Acc Chem Res 44:553

    Article  CAS  PubMed  Google Scholar 

  11. Grossmann D, Dreier A, Lehmann CW, Gruenert W (2015) Microporous Mesoporous Mater 202:189

    Article  CAS  Google Scholar 

  12. Wang X, Li N, Pfefferle LD, Haller GL (2013) Microporous Mesoporous Mater 176:139

    Article  CAS  Google Scholar 

  13. Ramirez-Barria C, Guerrero-Ruiz A, Castillejos-Lopez E, Rodriguez-Ramos I, Durand J, Volkman J, Serp P (2016) RSC Adv 6:54293

    Article  CAS  Google Scholar 

  14. Van Dommele S, Romero-Izquierdo A, Brydson R, de Jong KP, Bitter JH (2008) Carbon 46:138

    Article  CAS  Google Scholar 

  15. Faba L, Criado YA, Gallegos-Suarez E, Perez-Cadenas M, Diaz E, Rodriguez-Ramos I, Guerrero-Ruiz A, Ordonez S (2013) Appl Catal A 458:155

    Article  CAS  Google Scholar 

  16. Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J et al (2010) J Am Chem Soc 132:9616

    Article  CAS  Google Scholar 

  17. Zapata PA, Faria J, Pilar Ruiz M, Resasco DE (2012) Top Catal 55:38

    Article  CAS  Google Scholar 

  18. Chaudhari BR (2016) World J Pharm Res 5:1644

    CAS  Google Scholar 

  19. Ebitani K (2014) Comprehensive organic synthesis, 2nd edn. Elsevier B.V., Oxford, pp 571–605

    Google Scholar 

  20. Hu X-M, Zhao Y, Gao Y-F, Xiao Y-B, Zhang B-X (2012) Adv Mater Res 554–556:557

    Article  CAS  Google Scholar 

  21. Bigi F, Quarantelli C (2012) Curr Org Synth 9:31

    Article  CAS  Google Scholar 

  22. Delgado-Gomez FJ, Calvino-Casilda V, Cerpa-Naranjo A, Rojas-Cervantes ML (2017) Mol Catal 2017(443):101

    Article  CAS  Google Scholar 

  23. McPhail MR, Sells JA, He Z, Chusuei CC (2009) J Phys Chem C 113:14102

    Article  CAS  Google Scholar 

  24. Singh DK, Iyer PK, Giri PK (2009) J Nanosci Nanotechnol 9:5396

    Article  CAS  PubMed  Google Scholar 

  25. Delidovich I, Palkovits R (2016) Microporous Mesoporous Mater 219:317

    Article  CAS  Google Scholar 

  26. Dominguez C, Perez-Alonso FJ, Abdel Salam M, Al-Thabaiti SA, Obaid AY, Alshehri AA et al (2015) Appl Catal B 162:420

    Article  CAS  Google Scholar 

  27. Nowicki P, Szymanowski W, Pietrzak R (2015) Pol J Chem Technol 17:120

    Article  CAS  Google Scholar 

  28. Ebbesen TW, Hiura H, Bisher ME, Treacy MMJ, Shreeve-Keyer JL, Haushalter RC (1996) Adv Mater 8:155

    Article  CAS  Google Scholar 

  29. Osswald S, Havel M, Gogotsi Y (2007) J Raman Spectrosc 38:728

    Article  CAS  Google Scholar 

  30. Ovejero G, Sotelo JL, Romero MD, Rodriguez A, Ocana MA, Rodriguez G et al (2006) Ind Eng Chem Res 45:2206

    Article  CAS  Google Scholar 

  31. Zhang J, Zou H, Quan Q, Yang Y, Li Q, Liu Z et al (2003) J Phys Chem B 107:3712

    Article  CAS  Google Scholar 

  32. Goyanes S, Rubiolo GR, Salazar A, Jimeno A, Corcuera MA, Mondragon I (2007) Diam Relat Mater 16:412

    Article  CAS  Google Scholar 

  33. Chen S, Shen W, Wu G, Chen D, Jiang M (2005) Chem Phys Lett 402:312

    Article  CAS  Google Scholar 

  34. Wei L, Zhang Y (2007) Chem Phys Lett 446:142

    Article  CAS  Google Scholar 

  35. Kennet A, Rubinson JFR (2001) Análisis Instrumental Spanish edition, 1st edn. Pearson Publications Company, London

  36. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds, tables of spectral data, 4th revised and enlarged edition. Springer, Berlin

  37. Kryszak D, Stawicka K, Calvino-Casilda V, Martin-Aranda R, Ziolek M (2017) Appl Catal A 531:139

    Article  CAS  Google Scholar 

  38. Calvino-Casilda V, Olejniczak M, Martin-Aranda RM, Ziolek M (2016) Microporous Mesoporous Mater 224:201

    Article  CAS  Google Scholar 

  39. Wang L, Wang L, Jin H, Bing N (2011) Catal Commun 15:78

    Article  CAS  Google Scholar 

  40. Van Dommele S, De Jong KP, Bitter JH (2006) Chem Commun. https://doi.org/10.1039/B610208E

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Science and Innovation (CTM2014-56668-R) and by 2017/UEM09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Rojas-Cervantes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrios-Bermúdez, N., Santos-Granados, J., Calvino-Casilda, V. et al. Porous Alkaline-Earth Doped Multiwall Carbon Nanotubes with Base Catalytic Properties. Catal Lett 149, 2279–2290 (2019). https://doi.org/10.1007/s10562-019-02807-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02807-6

Keywords

Navigation