Skip to main content

Advertisement

Log in

G-C3N4 Nanosheets Coupled with TiO2 Nanosheets as 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity for Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

TiO2/g-C3N4 2D/2D heterojunction nanocomposites were successfully synthesized through a facile self-assembly method. The structure characterization results shows good interaction between TiO2 nanosheets and g-C3N4 nanosheets. The photocatalytic activity of TiO2/g-C3N4 samples were measured by hydrogen production in water splitting under visible light irradiation, which was found that the composites enhance the photocatalytic activity clearly compared to pure g-C3N4 and TiO2 nanosheets. The results could attribute to the formation of 2D heterojunction because of the stimulative charge transfer, promotional separation efficiency of photoexcited electron and hole and the suitable band positions. Besides, the samples exhibited substantial stability under visible light irradiation by the recycling experiments. The feasible photocatalytic mechanism was minutely discussed, which could explain the enhanced photocatalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10

Similar content being viewed by others

References

  1. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  CAS  Google Scholar 

  2. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Yu J, Jaroniec M, Chen X (2019) Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00400

    Article  PubMed  Google Scholar 

  4. Li X, Dong H, Wang B, Lv J, Xu G, Wang D, Wu Y (2018) Controllable synthesis of MoS2/h-CdS/c-CdS nanocomposites with enhanced photocatalytic hydrogen evolutionu under visible light irradiation. Catal Lett 148:3445–3453

    Article  CAS  Google Scholar 

  5. Yang H, Liu Z, Wang K, Pu S, Yang S, Yang L (2017) A facile synthesis of TiO2-CdS heterostructures with wnhanced photocatalytic activity. Catal Lett 147:2581–2591

    Article  CAS  Google Scholar 

  6. Hu Y, Pan W, Kong X (2018) Enhancement of photocatalytic activity for fold-like ZnO via hybridization with grapheme. Micro Nano Lett 13:232–236

    Article  CAS  Google Scholar 

  7. Yang Y, Huang W (2018) Design of copper and titanium dioxide nanoparticles doped with reduced graphene oxide for hydrogen evolution by water splitting. Russ J Phys Chem A 92:968–975

    Article  CAS  Google Scholar 

  8. Fakhri A, Behrouz S (2015) Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol Energy 112:163–168

    Article  CAS  Google Scholar 

  9. Khan H, Murtaza G, Choudhary M, Ahmed Z, Malik M (2018) Photocatalytic removal of carcinogenic reactive red S3B dye by using ZnO and Cu doped ZnO nanoparticles synthesized by polyol method: a kinetic study. Sol Energy 173:875–881

    Article  CAS  Google Scholar 

  10. Nakamura R, Tanaka T, Nakato Y (2005) Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal-oxynitride surface? J Phys Chem B 109:8920–8927

    Article  CAS  PubMed  Google Scholar 

  11. Yashima M, Maeda K, Teramura K, Takata T, Domen K (2005) Crystal structure and optical properties of (Ga1-xZnx)(N1-xOx) oxynitride photocatalyst (x = 0.13). Chem Phys Lett 416:225–228

    Article  CAS  Google Scholar 

  12. Naseri A, Samadi M, Pourjavadi A, Moshfegh A (2017) Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J Mater Chem A 5:23406–23433

    Article  CAS  Google Scholar 

  13. Lu X, Xie J, Liu S, Adamski AJ, Chen X, Li X (2018) Low-cost Ni3B/Ni(OH)2 as an ecofriendly hybrid cocatalyst for remarkably boosting photocatalytic H2 production over g-C3N4 nanosheets. Acs Sustain Chem Eng 6:13140–13150

    Article  CAS  Google Scholar 

  14. Wen J, Xie J, Yang Z, Shen R, Li H, Luo X, Chen X, Li X (2017) Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of nanocarbons. Acs Sustain Chem Eng 5:2224–2236

    Article  CAS  Google Scholar 

  15. Ong W, Tan L, Yun H, Yong S, Chai S (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  PubMed  Google Scholar 

  16. Lakhi K, Park D, Al-Bahily K, Cha W, Viswanathan B (2016) Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem Soc Rev 46:72–101

    Article  Google Scholar 

  17. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  18. Liu G, Niu P, Sun C, Smith SC, Chen Z (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648

    Article  CAS  PubMed  Google Scholar 

  19. Oh Y, Hwang J, Lee E, Yoon M, Le V, Kim Y, Kim D, Kim S (2016) Divalent Fe atom coordination in two-dimensional microporous graphitic carbon nitride. ACS Appl Mater Interfaces 8:25438–25443

    Article  CAS  PubMed  Google Scholar 

  20. Jiang J, Cal S, Hu C, Chen C (2017) A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin J Catal 38:1981–1989

    Article  CAS  Google Scholar 

  21. Caux M, Fina F, Irvine J, Idriss H, Howe R (2017) Impact of the annealing temperature on Pt/g-C3N4, structure, activity and selectivity between photodegradation and water splitting. Catal Today 281:182–188

    Article  CAS  Google Scholar 

  22. Patnaik S, Martha S, Madras G, Parida K (2016) Effect of sulfate pre-treatment to improve deposition of Au-nanoparticles in sulphated g-C3N4 photocatalyst towards visible light induced water reduction reaction. Phys Chem Chem Phys 18:28502–28514

    Article  CAS  PubMed  Google Scholar 

  23. Zhu B, Xia P, Ho W, Yu J (2015) Isoelectric point and adsorption activity of porous g-C3N4. Appl Surf Sci 344:188–195

    Article  CAS  Google Scholar 

  24. Yu J, Nong Q, Jiang X, Liu X, Wu Y, He Y (2016) Novel Fe2(MoO4)3/g-C3N4 heterojunction for efficient contaminant removal and hydrogen production under visible light irradiation. Sol Energy 139:355–364

    Article  CAS  Google Scholar 

  25. Chen F, Yang H, Wang X, Yu H (2017) Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts. Chin J Catal 38:296–304

    Article  CAS  Google Scholar 

  26. He K, Xie J, Luo X, Wen J, Ma S, Li X, Fang Y, Zhang X (2017) Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts. Chin J Catal 38:240–252

    Article  CAS  Google Scholar 

  27. Shen R, Liu W, Ren D, Xie J, Li X (2019) Co1.4Ni0.6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet Schottky heterojunctions for active and durable photocatalytic H2 production. Appl Surf Sci 466:393–400

    Article  CAS  Google Scholar 

  28. Wang J, Xia Y, Zhao H, Wang G, Xiang L, Xu J, Komarneni S (2017) Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl Catal B 206:406–416

    Article  CAS  Google Scholar 

  29. Li J, Liu E, Ma Y, Hu X, Wan J, Sun L, Fan J (2016) Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl Surf Sci 364:694–702

    Article  CAS  Google Scholar 

  30. Jo W, Kumar S, Eslava S, Tonda S (2018) Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl Catal B 239:586–598

    Article  CAS  Google Scholar 

  31. Fu F, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B 243:556–565

    Article  CAS  Google Scholar 

  32. Xu Q, Zhu B, Jiang C, Cheng B, Yu J (2019) Constructing 2D/2D Fe2O3/g-C3N4 direct Z-Scheme photocatalysts with enhanced H2 generation performance. Solar RRL 2:1800006

    Article  CAS  Google Scholar 

  33. Ran J, Guo W, Wang H, Zhu B, Yu J, Qiao S-Z (2018) Metal-free 2D/2D phosphorene/g-C3N4 Van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv Mater 30:1800128

    Article  CAS  Google Scholar 

  34. Wang Q, Wang W, Zhong L, Liu D, Cao X, Cui F (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B 220:290–302

    Article  CAS  Google Scholar 

  35. Li Y, Wang R, Li H, Wei X, Feng J, Liu K, Dang Y, Zhou A (2015) Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co-Pi. J Phys Chem C 119:20283–20292

    Article  CAS  Google Scholar 

  36. Zhou J, Zhang M, Zhu Y (2015) Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Phys Chem Chem Phys 17:3647–3652

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890

    Article  CAS  PubMed  Google Scholar 

  38. Lei J, Chen Y, Wang L, Liu Y, Zhang J (2015) Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50:3467–3476

    Article  CAS  Google Scholar 

  39. Xu H, Li S, Ge L, Han C, Gao Y, Dai D (2017) In-situ synthesis of novel plate-like Co(OH)2 co-catalyst decorated TiO2 nanosheets with efficient photocatalytic H2 evolution activity. Int J Hydrog Energy 42:22877–22886

    Article  CAS  Google Scholar 

  40. Liu Y, Zhang H, Ke J, Zhang J, Tian W, Xu X, Duan X, Sun H, Tade M, Wang S (2018) 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl Catal B 228:64–74

    Article  CAS  Google Scholar 

  41. Cao S, Yu J (2014) G-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107

    Article  CAS  PubMed  Google Scholar 

  42. Xu J, Zhang L, Shi R, Zhu Y (2013) Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A 1:14766–14772

    Article  CAS  Google Scholar 

  43. Li W, Zhao C, Zhang Q (2018) Synthesis of Bi/BiOCl-TiO2-CQDs quaternary photocatalyst with enhanced visible-light photoactivity and fast charge migration. Catal Commun 107:74–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work supported by the Scientific Research Foundation of Shaanxi University of Science & Technology (No. BJ14-24), Special Research Fund of Education Department of Shaanxi (No. 15JK1105, 16JK1108) and Research Fund of Technology Department of Shaanxi (No. 2017JQ2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 5203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, X., Lu, C. et al. G-C3N4 Nanosheets Coupled with TiO2 Nanosheets as 2D/2D Heterojunction Photocatalysts Toward High Photocatalytic Activity for Hydrogen Production. Catal Lett 149, 2930–2939 (2019). https://doi.org/10.1007/s10562-019-02805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02805-8

Keywords

Navigation