Skip to main content
Log in

Zirconium Doped Precipitated Fe-Based Catalyst for Fischer–Tropsch Synthesis to Light Olefins at Industrially Relevant Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct conversion of synthesis gas to light olefins (ethylene, propylene, and butylenes) over Fe–Zr co-precipitated catalysts was investigated in a continuous-flow fixed-bed reactor at industrially relevant conditions. The effect of incorporation of zirconium on the textural properties, surface physicochemical properties, and reduction/carburization ability of Fe-based multi-component catalysts were examined by N2 adsorption–desorption, X-ray diffraction, transmission electron microscope, H2 temperature-programmed reduction (H2-TPR), CO temperature-programmed reduction, and X-ray photoelectron spectroscopy. The results indicated that the addition of less zirconium can promote the dispersion of iron oxide particles and increase the specific surface area of catalyst, leads to a higher Fischer–Tropsch synthesis activity. However, excessive addition of the zirconium promoter will cover the surface active sites and suppress the reduction and carburization of catalyst, which lead to lower activity. Meanwhile, the catalytic stability was destroyed by the addition of less Zr. The charge transfer between Fe and other promoter was redistributed by Zr, which disturbed the original Fe–Mg interaction. When the content of Zr further increased, the stability was improved again by a new formed Fe–Zr interaction. The zirconium promoter can effectively inhibit the chain growth probability and hydrogenation ability, resulting in the improvement of light olefins selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wender I (1996) Fuel Process Technol 48:189

    Article  CAS  Google Scholar 

  2. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  3. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692

    Article  CAS  PubMed  Google Scholar 

  4. Galvis HMT, de Jong KP (2013) ACS Catal 3:2130

    Article  CAS  Google Scholar 

  5. Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin TJ, Lin YJ, Qi XZ, Dai YY, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Nature 538:84

    Article  CAS  PubMed  Google Scholar 

  6. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP (2012) Science 335:835

    Article  CAS  Google Scholar 

  7. Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, Yan S, Qiao MH, Zong BN (2016) ACS Catal 6:389

    Article  CAS  Google Scholar 

  8. Liu Y, Chen JF, Bao J, Zhang Y (2015) ACS Catal 5:3905

    Article  CAS  Google Scholar 

  9. Yang Y, Xiang HW, Xu YY, Bai L, Li YW (2004) Appl Catal A 266:181

    Article  CAS  Google Scholar 

  10. Zhai P, Xu C, Gao R, Liu X, Li M, Li W, Fu X, Jia C, Xie J, Zhao M, Wang X, Li YW, Zhang QW, Wen XD, Ma D (2016) Angew Chem Int Ed 55:9902

    Article  CAS  Google Scholar 

  11. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Catal Lett 77:197

    Article  CAS  Google Scholar 

  12. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237:405

    Article  CAS  Google Scholar 

  13. Yang J, Sun Y, Tang Y, Liu Y, Wang H, Tian L, Wang H, Zhang Z, Xiang H, Li YW (2006) J Mol Catal A 245:26

    Article  CAS  Google Scholar 

  14. Liu Y, Chen J, Zhang Y (2015) Reac Kinet Mech Cat 114:433

    Article  CAS  Google Scholar 

  15. Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2:1030

    Article  CAS  Google Scholar 

  16. Lohitharn N, Goodwin JG, Lotero E (2008) J Catal 255:104

    Article  CAS  Google Scholar 

  17. Johnson GR, Werner S, Bell AT (2015) ACS Catal 5:5888

    Article  CAS  Google Scholar 

  18. Johnson GR, Bell AT (2016) ACS Catal 6:100

    Article  CAS  Google Scholar 

  19. Enache DI, Roy-Auberger M, Revel R (2004) Appl Catal A 268:51

    Article  CAS  Google Scholar 

  20. Li Z, Wu J, Yu J, Han D, Wu L, Li J (2016) J Mol Catal A 424:384

    Article  CAS  Google Scholar 

  21. Wu YJ, Zhang WT, Yang MM, Zhao YH, Liu ZT, Yan JY (2017) RSC Adv 7:24157

    Article  Google Scholar 

  22. Qing M, Yang Y, Wu B, Xu J, Zhang C, Gao P, Li YW (2011) J Catal 279:111

    Article  CAS  Google Scholar 

  23. Lohitharn N, Goodwin JG (2008) J Catal 257:142

    Article  CAS  Google Scholar 

  24. Liu Y, Fang K, Chen J, Sun Y (2007) Green Chem 9:611

    Article  CAS  Google Scholar 

  25. Cao J, Wang Y, Yu X, Wang S, Wu S, Yuan Z (2008) Appl Catal B 79:26

    Article  CAS  Google Scholar 

  26. Kumar S, Kumar S, Tiwari S, Srivastava S, Srivastava M, Yadav BK, Kumar S, Tran TT, Dewan AK, Mulchandani A, Sharma JG, Maji S, Malhotra BD (2015) Adv Sci 2:1500048

    Article  CAS  Google Scholar 

  27. Suo H, Wang S, Zhang C, Xu J, Wu B, Yang Y, Xiang H, Li YW (2012) J Catal 286:111

    Article  CAS  Google Scholar 

  28. Wan H, Wu B, Xiang H, Li Y (2012) ACS Catal 2:1877

    Article  CAS  Google Scholar 

  29. Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y (2018) J Catal 364:382

    Article  CAS  Google Scholar 

  30. Liu Y, Chen JF, Zhang Y (2015) RSC Adv 5:29002

    Article  CAS  Google Scholar 

  31. Zhang W, Gao R, Su C, Yin Y (1993) Stud Surf Sci Catal 75:2793

    Article  CAS  Google Scholar 

  32. Chen N, Zhang J, Ma Q, Fan S, Zhao T (2016) RSC Adv 6:34204

    Article  CAS  Google Scholar 

  33. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Sanz JF, Rodriguez JA (2014) Science 345:546

    Article  CAS  PubMed  Google Scholar 

  34. Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD, Barrio L, Liu P, Sanz JF, Hrbek J, Rodriguez JA (2010) J Am Chem Soc 132:356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of P. R. China (No. 91334206 and 21606011), National “863” program of P. R. China (No. 2013AA031702), and China Postdoctoral Science Foundation (2016M591051 and 2017T100029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Liu, Yi Zhang or Qing Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Li, D., Liu, Y. et al. Zirconium Doped Precipitated Fe-Based Catalyst for Fischer–Tropsch Synthesis to Light Olefins at Industrially Relevant Conditions. Catal Lett 149, 1486–1495 (2019). https://doi.org/10.1007/s10562-019-02775-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02775-x

Keywords

Navigation