Chabazite Architecture Dominates the Structure of SAPO-34’s Surface Methoxy Species

  • Kailu Zang
  • Wenna Zhang
  • Jindou Huang
  • Pei FengEmail author


Four types of SAPO-34’s surface methoxy species (CH3-SAPO-34) structures have been studied by periodic density functional theory calculations. The most stable CH3-SAPO-34 structure is the methyl cation locating on the framework oxygen anion site O(z1), which is at the middle position of a cha composite building unit.

Graphical Abstract


Zeolites Reaction intermediates Density functional theory Methanol-to-olefins SAPO-34 Surface methoxy species Chabazite architecture Steric hindrance 



We are grateful to the Dalian Institute of Chemical Physics Methanol to Olefins Program (Grant No. DICP DMTO201601).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary Material

The supplementary material contains additional figures and tables, and the structure coordinates of HZ1 to HZ4 and SMS1 to SMS4.

Supplementary material

10562_2019_2774_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1285 kb)


  1. 1.
    Wu X, Xu S, Zhang W, Huang J, Li J, Yu B, Wei Y, Liu Z (2017) Angew Chem Int Ed 56:9039CrossRefGoogle Scholar
  2. 2.
    Chowdhury AD, Houben K, Whiting GT, Mokhtar M, Asiri AM, Al-Thabaiti SA, Basahel SN, Baldus M, Weckhuysen BM (2016) Angew Chem Int Ed 55:15840CrossRefGoogle Scholar
  3. 3.
    Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher JA (2016) Angew Chem Int Ed 55:5723CrossRefGoogle Scholar
  4. 4.
    Yarulina I, Chowdhury AD, Meirer F, Weckhuysen BM, Gascon J (2018) Nat Catal 1:398CrossRefGoogle Scholar
  5. 5.
    Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922CrossRefGoogle Scholar
  6. 6.
    Wu X, Xu S, Wei Y, Zhang W, Huang J, Xu S, He Y, Lin S, Sun T, Liu Z (2018) ACS Catal 8:7356CrossRefGoogle Scholar
  7. 7.
    Wang W, Hunger M (2008) Acc Chem Res 41:895CrossRefGoogle Scholar
  8. 8.
    Smith L, Cheetham AK, Marchese L, Thomas JM, Wright PA, Chen J, Gianotti E (1996) Catal Lett 41:13CrossRefGoogle Scholar
  9. 9.
    Smith L, Cheetham AK, Morris RE, Marchese L, Thomas JM, Wright PA, Chen J (1996) Science 271:799CrossRefGoogle Scholar
  10. 10.
    Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flanigen EM (1984) J Am Chem Soc 106:6092CrossRefGoogle Scholar
  11. 11.
    Dent LS, Smith JV (1958) Nature 181:1794CrossRefGoogle Scholar
  12. 12.
    Baerlocher Ch, McCusker LB. Database of Zeolite Structures. (accessed Sep. 10, 2018)
  13. 13.
    O’Keeffe M, Hyde ST (1997) Zeolites 19:370CrossRefGoogle Scholar
  14. 14.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272CrossRefGoogle Scholar
  15. 15.
    Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA (2015) Chem Soc Rev 44:7044CrossRefGoogle Scholar
  16. 16.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810CrossRefGoogle Scholar
  17. 17.
    Jeanvoine Y, Ángyán JG, Kresse G, Hafner J (1998) J Phys Chem B 102:5573CrossRefGoogle Scholar
  18. 18.
    Kang L, Zhang T, Liu Z, Han K-L (2008) J Phys Chem C 112:5526CrossRefGoogle Scholar
  19. 19.
    Shah R, Payne MC, Lee M-H, Gale JD (1996) Science 271:1395CrossRefGoogle Scholar
  20. 20.
    Haase F, Sauer J (1995) J Am Chem Soc 117:3780CrossRefGoogle Scholar
  21. 21.
    Zicovich-Wilson CM, Viruela P, Corma A (1995) J Phys Chem 99:13224CrossRefGoogle Scholar
  22. 22.
    Messow U, Quitzsch K, Herden H (1984) Zeolites 4:255CrossRefGoogle Scholar
  23. 23.
    Sastre G (2016) Front Chem Sci Eng 10:76CrossRefGoogle Scholar
  24. 24.
    Svelle S, Visur M, Olsbye U, Bjørgen M (2011) Top Catal 54:897CrossRefGoogle Scholar
  25. 25.
    Blaszkowski SR, van Santen RA (1996) J Am Chem Soc 118:5152CrossRefGoogle Scholar
  26. 26.
    Brogaard RY, Henry R, Schuurman Y, Medford AJ, Moses PG, Beato P, Svelle S, Nørskov JK, Olsbye U (2014) J Catal 314:159CrossRefGoogle Scholar
  27. 27.
    Boronat M, Martínez C, Corma A (2011) Phys Chem Chem Phys 13:2603CrossRefGoogle Scholar
  28. 28.
    Ghorbanpour A, Rimer JD, Grabow LC (2016) ACS Catal 6:2287CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  31. 31.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  32. 32.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  34. 34.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  35. 35.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  37. 37.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China

Personalised recommendations