Skip to main content
Log in

Synthesis of Convertible {PO4[WO3\(\rightleftharpoons\) W(O)2(O2)]4}-DMA16 in SBA-15 Nanochannels and Its Catalytic Oxidation Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A phase transfer catalyst ({PO4[WO3]4}-DMA16) had been first synthesized and stabilized in mesochannels of (3-chloropropyl)trimethoxysilane-functionalized mesoporous silica SBA-15 to build an active nano-environment for triphase cyclohexene oxidation. Tungsten precursor ({PO4[WO3]4}3−) and organic amino N,N-dimethylhexadecan-1-amine (DMA16) self-assembled in channels of SBA-15 to form a hybrid catalyst {PO4[WO3]4}-DMA16-SBA-15, which combined advantages of homogeneous and heterogeneous catalysts. Insoluble {PO4[WO3]4}-DMA16 formed soluble {PO4[W(O)2(O2)]4}-DMA16 active species with the aid of H2O2, and when H2O2 was consumed out, {PO4[WO3]4}-DMA16 was recombined. In addition, free remaining organic moieties (–Cl and -DMA16) on the surface of SBA-15 allowed {PO4[WO3]4}-DMA16-SBA-15 catalyst possessed more hydrophobic surface property, which further facilitated the compatibility between organic reactant cyclohexene and inorganic H2O2 molecules. The easy reusability of {PO4[WO3]4}-DMA16-SBA-15 catalyst for five catalytic runs without distinct change in catalytic activity was a significant “green” attribute of this catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    Article  CAS  PubMed  Google Scholar 

  2. Dickinson RE, Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319:109–115

    Article  CAS  Google Scholar 

  3. Popp A, Campen HL, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob Environ Change 20:451–462

    Article  Google Scholar 

  4. Ghosh S, Acharyya SS, Adak S, Konathala LNS, Sasaki T, Bal R (2014) Selective oxidation of cyclohexene to adipic acid over silver supported tungsten oxide nanostructured catalysts. Green Chem 16:2826–2834

    Article  CAS  Google Scholar 

  5. Deng YQ, Ma ZF, Wang K, Chen J (1999) Clean synthesis of adipic acid by direct oxidation of cyclohexene with H2O2 over peroxytungstate-organic complex catalysts. Green Chem 1:275–276

    Article  CAS  Google Scholar 

  6. Pai ZP, Kochubey DI, Berdnikova PV, Kanazhevskiy VV, Prikhodko IY, Chesalov YA (2010) Structure and properties of tungsten peroxopolyoxo complexes-promising catalysts for organics oxidation. I. Structure of peroxocomplexes studied during the stepwise synthesis of tetra(diperoxotungsten)phosphate-tetra-n-butyl ammonium. J Mol Catal A 332:122–127

    Article  CAS  Google Scholar 

  7. Bohström Z, Lattes IR, Holmberg K (2010) Oxidation of cyclohexene into adipic acid in aqueous dispersions of mesoporous oxides with built-in catalytical sites. Green Chem 12:1861–1869

    Article  CAS  Google Scholar 

  8. Ke IS, Liu ST (2007) Synthesis and catalysis of tungsten oxide in hexagonal mesoporous silicas (W-HMS). Appl Catal A 317:91–96

    Article  CAS  Google Scholar 

  9. Vafaeezadeh M, Hashemi MM, Fard MS (2012) Design of silica supported task-specific ionic liquid catalyst system for oxidation of cyclohexene to adipic acid with 30% H2O2. Catal Commun 26:54–57

    Article  CAS  Google Scholar 

  10. Yang XL, Dai WL, Chen H, Xu JH, Cao Y, Li HX, Fan KN (2005) Novel tungsten-containing mesoporous HMS material: its synthesis, characterization and catalytic application in the selective oxidation of cyclopentene to glutaraldehyde by aqueous H2O2. Appl Catal A 283:1–8

    Article  CAS  Google Scholar 

  11. Yang XL, Dai WL, Gao RH, Chen H, Li HX, Cao Y, Fan KN (2005) Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde. J Mol Catal A 241:205–214

    Article  CAS  Google Scholar 

  12. Campestrini S, Furia FD, Rossi P, Torboli A, Valle G (1993) Comparison of the relative efficiency of peroxomolybdenum complexes as oxidants of the alcoholic function. J Mol Catal 83:95–105

    Article  CAS  Google Scholar 

  13. Venturello C, Alneri E, Ricci M (1983) A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions. J Org Chem 48:3831–3833

    Article  CAS  Google Scholar 

  14. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171–198

    Article  CAS  PubMed  Google Scholar 

  15. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M (1988) Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J Org Chem 53:3587–3593

    Article  CAS  Google Scholar 

  16. Sato K, Aoki M, Noyori R (1998) A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 281:1646–1647

    Article  CAS  PubMed  Google Scholar 

  17. Xi ZW, Zhou N, Sun Y, Li KL (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139–1141

    Article  CAS  Google Scholar 

  18. Regen SL (1975) Triphase catalysis. J Am Chem Soc 97:5956–5957

    Article  CAS  Google Scholar 

  19. Balakrishnan T, Babu SH, Perumal A (1990) Triphase catalysis. I. Kinetics and mechanism of alkylation of phenylacetonitrile with alkyl halides catalyzed by aqueous naoh and polymer-supported benzyltriethylammonium chloride. J Polym Sci A 28:1421–1434

    Article  CAS  Google Scholar 

  20. Wang ML, Lee ZF, Wang FS (2005) Phase-transfer-catalyzed etherification of 4,4-bis(chloromethyl)-1,1-biphenyl with 1-butanol by polymer-supported catalysis. Ind Eng Chem Res 44:5417–5426

    Article  CAS  Google Scholar 

  21. Yu ST, Gao XC, Li L, Liu SW, Wu Q (2018) Catalytic cracking of rubber seed oil using basic mesoporous molecular sieves K2O/MeO-SBA-15 (Me = Ca, Mg or Ba) as heterogeneous catalysts for the production of liquid hydrocarbon fuels. Catal Lett 148:3787–3796

    Article  CAS  Google Scholar 

  22. Doustkhah E, Baghban A, Assadi MHN, Luque R, Rostamnia S (2019) Mesoporous SBA-15/PIDA as a dendrimer zwitterionic amino acid-type organocatalyst for three-component indazolophtalazine synthesis. Catal Lett 149:591–600

    Article  CAS  Google Scholar 

  23. Perego C, Millini R (2013) Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev 42:3956–3976

    Article  CAS  PubMed  Google Scholar 

  24. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

  25. Zheng HW, Sun Z, Chen XL, Zhao Q, Wang XH, Jiang ZJ (2013) A micro reaction-controlled phase-transfer catalyst for oxidative desulfurization based on polyoxometalate modified silica. Appl Catal A 467:26–32

    Article  CAS  Google Scholar 

  26. Li L, Li H, Jin C, Wang XC, Ji WJ, Pan Y, Knaap TVD, Stoel RVD, Au CT (2010) Surface cobalt silicate and CoOx cluster anchored to SBA-15: highly efficient for cyclohexane partial oxidation. Catal Lett 136:20–27

    Article  CAS  Google Scholar 

  27. Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem Mater 11:3285–3295

    Article  CAS  Google Scholar 

  28. Enumula SS, Gurram VRB, Chada RR, Burri DR, Kamaraju SRR (2017) Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst. J Mol Catal A 426:30–38

    Article  CAS  Google Scholar 

  29. Li H, Xu Y, Yang HX, Zhang F, Li HX (2009) Ni-B amorphous alloy deposited on an aminopropyl and methyl co-functionalized SBA-15 as a highly active catalyst for chloronitrobenzene hydrogenation. J Mol Catal A 307:105–114

    Article  CAS  Google Scholar 

  30. Chen H, Dai WL, Yang XL, Gao RH, Cao Y, Li HX, Fan KN (2006) Studies on the structural change of a reaction-controlled phase-transfer [π-C5H5NC16H33]3{PO4[WO3]4} catalyst during the selective oxidation of cyclopentene to glutaric acid with aqueous H2O2. Appl Catal A 309:62–69

    Article  CAS  Google Scholar 

  31. Jia MJ, Seifert A, Thiel WR (2003) Mesoporous MCM-41 materials modified with oxodiperoxo molybdenum complexes: efficient catalysts for the epoxidation of cyclooctene. Chem Mater 15:2174–2180

    Article  CAS  Google Scholar 

  32. Cuello VSG, Giraldo L, Piraján JCM (2011) Oxidation of carbon monoxide over SBA-15-confined copper, palladium and iridium nanocatalysts. Catal Lett 141:1659–1669

    Article  CAS  Google Scholar 

  33. Chong ASM, Zhao XS (2003) Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B 107:12650–12657

    Article  CAS  Google Scholar 

  34. Patel A, Pathan S (2012) Keggin-type cesium salt of first series transition metal-substituted phosphomolybdates: one-pot easy synthesis, structural, and spectral analysis. J Coord Chem 65:3122–3132

    Article  CAS  Google Scholar 

  35. Jin MM, Wang JK, Wang B, Guo ZM, Lv ZG (2019) Highly effective green oxidation of aldehydes catalysed by recyclable tungsten complex immobilized in organosilanes-modified SBA-15. Microporous Mesoporous Mater 277:84–94

    Article  CAS  Google Scholar 

  36. Jin MM, Guo ZM, Lv ZG (2019) Immobilization of tungsten chelate complexes on functionalized mesoporous silica SBA-15 as heterogeneous catalysts for oxidation of cyclopentene. J Mater Sci 54:6853–6866

    Article  CAS  Google Scholar 

  37. Sun Y, Xi ZW, Cao GY (2001) Epoxidation of olefins catalyzed by [π-C5H5NC16H33]3[PW4O16] with molecular oxygen and a recyclable reductant 2-ethylanthrahydroquinone. J Mol Catal A 166:219–224

    Article  CAS  Google Scholar 

  38. Pope MT (1983) Heteropoly and isopoly oxometallates. Springer-Verlag, Berlin, p 66

    Book  Google Scholar 

  39. Cheng CY, Lin KJ, Prasad MR, Fu SJ, Chang SY, Shyu SG, Sheu HS, Chen CH, Chuang CH, Lin MT (2007) Synthesis of a reusable oxotungsten-containing SBA-15 mesoporous catalyst for the organic solvent-free conversion of cyclohexene to adipic acid. Catal Commun 8:1060–1064

    Article  CAS  Google Scholar 

  40. Lapisardi G, Chiker F, Launay F, Nogier JP, Bonardet JL (2004) A “one-pot” synthesis of adipic acid from cyclohexene under mild conditions with new bifunctional Ti-AlSBA mesostructured catalysts. Catal Commun 5:277–281

    Article  CAS  Google Scholar 

  41. Lee SO, Raja R, Harris KDM, Thomas JM, Johnson BFG, Sankar G (2003) Mechanistic insights into the conversion of cyclohexene to adipic acid by H2O2 in the presence of a TAPO-5 catalyst. Angew Chem Int Ed 115:1558–1561

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Program of Shandong Province Natural Science Foundation [Grant No. ZR2017ZC0632]; National Natural Science Foundation of China [Grant No. NSFC21376128].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Guo, Z. & Lv, Z. Synthesis of Convertible {PO4[WO3\(\rightleftharpoons\) W(O)2(O2)]4}-DMA16 in SBA-15 Nanochannels and Its Catalytic Oxidation Activity. Catal Lett 149, 2794–2806 (2019). https://doi.org/10.1007/s10562-019-02761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02761-3

Keywords

Navigation