A New Pathway to 2-Arylbenzoxazoles and 2-Arylbenzothiazoles Via One-Pot Oxidative Cyclization Reactions Under Iron-Organic Framework Catalysis

  • Son H. Doan
  • Chau B. Tran
  • An. L. N. Cao
  • Nhan T. H. LeEmail author
  • Nam T. S. PhanEmail author


Iron-organic framework MOF-235 was synthesized, and consequently utilized as a productive heterogeneous catalyst for the synthesis of 2-arylbenzoxazoles and 2-arylbenzothiazoles via one-pot oxidative cyclization reactions between 2-aminophenols or 2-aminothiophenols and alcohols. The transformation was considerably controlled by the oxidant and the nature of solvent, and the system of di-tert-butylperoxide with xylene led to best yield of major products. The MOF-235 catalyst presented higher catalytic efficiency for the synthesis of 2-arylbenzoxazoles and 2-arylbenzothiazoles than a number of MOF-based catalysts and established homogeneous catalysts. Recovering and reutilizing the framework catalyst for the cyclization transformation was possible while its catalytic activity was retained. To the best of our knowledge, this iron-catalyzed one-pot oxidative transformation to produce 2-arylbenzoxazoles and 2-arylbenzothiazoles under heterogeneous catalysis conditions was not previously reported in the literature.

Graphical Abstract


Iron-organic framework Benzoxazoles Benzothiazoles Heterogeneous catalyst One-pot 



The Viet Nam National University—Ho Chi Minh City (VNU-HCM) is acknowledged for financial support via project No. NV2019-20-02.

Supplementary material

10562_2019_2747_MOESM1_ESM.doc (5.2 mb)
Supplementary material 1 (DOC 5356 KB)


  1. 1.
    Gong J, Huang L, Deng Q, Jie K, Wang Y, Guo S et al (2017) Org Chem Front 4:1781–1784CrossRefGoogle Scholar
  2. 2.
    Prajapati NP, Vekariya RH, Borad MA, Patel HD (2014) RSC Adv 4:60176–60208CrossRefGoogle Scholar
  3. 3.
    Bougrin K, Loupy A, Soufiaoui M (1998) Tetrahedron 54:8055–8064CrossRefGoogle Scholar
  4. 4.
    Wu F, Zhang J, Wei Q, Liu P, Xie J, Jiang H et al (2014) Org Biomol Chem 12:9696–9701CrossRefGoogle Scholar
  5. 5.
    Aksenov NA, Aksenov AV, Nadein ON, Aksenov DA, Smirnov AN, Rubin M (2015) RSC Adv 5:71620–71626CrossRefGoogle Scholar
  6. 6.
    Tiwari AR, Bhanage BM (2016) Org Biomol Chem 14:7920–7926CrossRefGoogle Scholar
  7. 7.
    Lin W-H, Wu W-C, Selvaraju M, Sun C-M (2017) Org Chem Front 4:392–397CrossRefGoogle Scholar
  8. 8.
    Naresh G, Kant R, Narender T (2014) J Org Chem 79:3821–3829CrossRefGoogle Scholar
  9. 9.
    Toni Hille T, Irrgang KR, (2014) Chem Eur J 20:5569–5572CrossRefGoogle Scholar
  10. 10.
    Lustig WP, Mukherjee S, Rudd ND, Desai AV, Li J, Ghosh SK (2017) Chem Soc Rev 46:3242–3285CrossRefGoogle Scholar
  11. 11.
    Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B (2016) Energy Environ Sci 9:3612–3641CrossRefGoogle Scholar
  12. 12.
    Zou F, Chao SL, Wang YX, Wang YL, Guan QX, Li W (2017) Environ Sci 4:46–51Google Scholar
  13. 13.
    Qin L, Zheng H-G (2017) CrystEngComm 19:745–757CrossRefGoogle Scholar
  14. 14.
    Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) Chem Soc Rev 46:3185–3241CrossRefGoogle Scholar
  15. 15.
    Julien PA, Mottillo C, Friščić T (2017) Green Chem 19:2729–2747CrossRefGoogle Scholar
  16. 16.
    Li P, Cheng F-F, Xiong W-W, Zhang Q (2018) Inorg Chem Front 5:2693–2708CrossRefGoogle Scholar
  17. 17.
    Lv X-X, Shi L-L, Li K, Li B-L, Li H-Y (2017) Chem Commun 53:1860–1863CrossRefGoogle Scholar
  18. 18.
    Al-Ghoul M, Issa R, Hmadeh M (2017) CrystEngComm 19:608–612CrossRefGoogle Scholar
  19. 19.
    Qin J-S, Yuan S, Wang Q, Alsalme A, Zhou H-C (2017) J Mater Chem A 5:4280–4291CrossRefGoogle Scholar
  20. 20.
    Song B-Q, Chen D-Q, Ji Z, Tang J, Wang X-L, Zang H-Y et al (2017) Chem Commun 53:1892–1895CrossRefGoogle Scholar
  21. 21.
    Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A et al (2017) Chem Soc Rev 46:3134–3184CrossRefGoogle Scholar
  22. 22.
    Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Chem Soc Rev 47:8349–8402CrossRefGoogle Scholar
  23. 23.
    Dhakshinamoorthy A, Li Z, Garcia H (2018) Chem Soc Rev 47:8134–8172CrossRefGoogle Scholar
  24. 24.
    Zhu L, Liu X-Q, Jiang H-L, Sun L-B (2017) Chem Rev 117:8129–8176CrossRefGoogle Scholar
  25. 25.
    Xiong G, Yu B, Dong J, Shi Y, Zhao B, He L-N (2017) Chem Commun 53:6013–6016CrossRefGoogle Scholar
  26. 26.
    Cirujano FG, López-Maya E, Rodríguez-Albelo M, Barea E, Navarro JAR, Vos DED (2017) ChemCatChem 9:4019–4023CrossRefGoogle Scholar
  27. 27.
    Shao Z, Mengjia Liu JD, Huang C, Xu W, Jie Wu, and Hongwei Hou. Inorg Chem.57:10224–10231Google Scholar
  28. 28.
    Xu Z, Meng W, Li H, Hou H, Fan Y (2014) Inorg Chem 53:3260–3262CrossRefGoogle Scholar
  29. 29.
    Wu Q, Han Y, Shao Z, Li J, Hou H (2018) Dalton Trans 47:8063–8069CrossRefGoogle Scholar
  30. 30.
    Huang Y-B, Liang J, Wang X-S, Cao R (2017) Chem Soc Rev 46:126–157CrossRefGoogle Scholar
  31. 31.
    Chughtai HA, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Chem Soc Rev 44:6804–6849CrossRefGoogle Scholar
  32. 32.
    Drake T, Ji P, Lin W (2018) Acc Chem Res 51:2129–2138CrossRefGoogle Scholar
  33. 33.
    Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J (2017) Mater Chem Front 1:1709–1745CrossRefGoogle Scholar
  34. 34.
    Chen Y-Z, Zhang R, Jiao L, Jiang H-L (2018) Coord Chem Rev 362:1–23CrossRefGoogle Scholar
  35. 35.
    Wen Y, Zhang J, Xu Q, Wu X-T, Zhu Q-L (2018) Coord Chem Rev 376:248–276CrossRefGoogle Scholar
  36. 36.
    Liang J, Huang Y-B, Cao R (2019) Coord Chem Rev 378:32–65CrossRefGoogle Scholar
  37. 37.
    Dhakshinamoorthy A, Garcia H (2014) Chem Soc Rev 43:5750–5765CrossRefGoogle Scholar
  38. 38.
    Dhakshinamoorthy A, Asiri AM, Garcia H (2019) ACS Catal 9:1081–1102CrossRefGoogle Scholar
  39. 39.
    Dhakshinamoorthy A, Asiri AM, Garcia H (2015) Chem Soc Rev 44:1922–1947CrossRefGoogle Scholar
  40. 40.
    Haque E, Jun JW, Jhung SH (2011) J Hazard Mater 185:507–511CrossRefGoogle Scholar
  41. 41.
    Anbia M, Hoseini V, Sheykhi S (2012) J Ind Eng Chem 18:1149–1152CrossRefGoogle Scholar
  42. 42.
    Sudik AC, Côté AP, Yaghi OM (2005) Inorg Chem 44:2998–3000CrossRefGoogle Scholar
  43. 43.
    Le TD, Nguyen KD, Nguyen VT, Truong T, Phan NTS (2016) J Catal 333:94–101CrossRefGoogle Scholar
  44. 44.
    Ha PTM, Le TD, Doan SH, Nguyen TT, Le NTH, Phan NTS (2017) Tetrahedron 73:5883–5891CrossRefGoogle Scholar
  45. 45.
    Doan SH, Nguyen KD, Huynh PT, Nguyen TT, Phan NTS (2016) J Mol Catal A 423:433–440CrossRefGoogle Scholar
  46. 46.
    Li Z, Fan F, Yang J, Liu Z-Q (2014) Org Lett 16:3396–3399CrossRefGoogle Scholar
  47. 47.
    Liu Q, Jackstell R, Beller M (2013) Angew Chem Int Ed 52:13871–13873CrossRefGoogle Scholar
  48. 48.
    Liu C, Liu D, Lei A (2014) Acc Chem Res 47:3459–3470CrossRefGoogle Scholar
  49. 49.
    Teng F, Sun S, Jiang Y, Yu J-T, Cheng J (2015) Chem Commun 51:5902–5905CrossRefGoogle Scholar
  50. 50.
    Horcajada P, Surblé S, Serre C, Hong D-Y, Seo Y-K, Chang J-S et al. (2007) Chem Commun. Google Scholar
  51. 51.
    Dan-Hardi M, Chevreau H, Devic T, Horcajada P, Maurin G, Férey G et al (2012) Chem Mater 24:2486–2492CrossRefGoogle Scholar
  52. 52.
    Baburin IA, Blatov VA, Carlucci L, Ciani G, Proserpio DM (2005) J Solid State Chem 178:2452–2474CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Chemical EngineeringHCMC University of Technology, VNU-HCMHo Chi Minh CityViet Nam

Personalised recommendations