Skip to main content
Log in

Hydrofunctionalization of Olefins to Higher Aliphatic Alcohols via Visible-Light Photocatalytic Coupling

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An atomically economical green protocol for the hydrofunctionalization of olefins to higher aliphatic alcohols with 100% anti-Markovnikov regioselectivity was developed via visible-light photocatalytic coupling. This method employs cheap, readily available and abundant methanol as both the C1 feedstock and the hydrogen source under visible light irradiation over CdS photocatalyst. A wide scope of olefin substrates could be hydrofunctionalized successfully to the corresponding higher alcohols with high selectivity. Besides alcohol, acetone and acetonitrile can also couple with olefins to generate the corresponding hydrofunctionalization products, suggesting promising potential industrial application.

Graphical Abstract

Hydrofunctionalization of olefins to value-added chemicals with high selectivity was achieved via visible-light photocatalytic cross-coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Angelici C, Weckhuysen BM, Bruijnincx PC (2013) ChemSusChem 6:1595–1614

    Article  CAS  PubMed  Google Scholar 

  2. Capacci AG, Malinowski JT, McAlpine NJ, Kuhne J, MacMillan DWC (2017) Nat Chem 9:1073–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR (2016) Nature 539:268–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chu JC, Rovis T (2016) Nature 539:272–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hammer SC, Kubik G, Watkins E, Huang S, Minges H, Arnold FH (2017) Science 358:215–218

    Article  CAS  PubMed  Google Scholar 

  6. Hu X, Zhang G, Bu F, Lei A (2017) ACS Catal 7:1432–1437

    Article  CAS  Google Scholar 

  7. Luk HT, Mondelli C, Ferre DC, Stewart JA, Perez-Ramirez J (2017) Chem Soc Rev 46:1358–1426

    Article  CAS  PubMed  Google Scholar 

  8. Nozaki K, Takaya H, Hiyama T (1997) Top Catal 4:175–185

    Article  Google Scholar 

  9. Breit B, Seiche W (2003) J Am Chem Soc 125:6608–6609

    Article  CAS  PubMed  Google Scholar 

  10. Murphy SK, Park JW, Cruz FA, Dong VM (2015) Science 347:56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Landis CR (2015) Science 347:29–30

    Article  CAS  PubMed  Google Scholar 

  12. Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F (2015) J Am Chem Soc 137:5204

    Article  CAS  PubMed  Google Scholar 

  13. Xiang Y, Chitry V, Liddicoat P, Felfer P, Cairney J, Ringer S, Kruse N (2013) J Am Chem Soc 135:7114–7117

    Article  CAS  PubMed  Google Scholar 

  14. Xiang Y, Kruse N (2016) Nat Commun 7:13058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Su J, Xie C, Chen C, Yu Y, Kennedy G, Somorjai GA, Yang P (2016) J Am Chem Soc 138:11568

    Article  CAS  PubMed  Google Scholar 

  16. Yamada Y, Tsung CK, Huang W, Huo Z, Habas SE, Soejima T, Aliaga CE, Somorjai GA, Yang P (2011) Nat Chem 3:372–376

    Article  CAS  PubMed  Google Scholar 

  17. Ravelli D, Protti S, Fagnoni M (2016) Acc Chem Res 49:2232

    Article  CAS  PubMed  Google Scholar 

  18. Romero NA, Nicewicz DA (2016) Chem Rev 116:10075–10166

    Article  CAS  PubMed  Google Scholar 

  19. Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625

    Article  CAS  Google Scholar 

  20. Kisch H (2013) Angew Chem Int Ed 52:812–847

    Article  CAS  Google Scholar 

  21. Wenderich K, Mul G (2016) Chem Rev 116:14587–14619

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Yang X, Zhou Z, Li C (2017) Chem 2:688–702

    Article  CAS  Google Scholar 

  23. Liu B, Lim CH, Miyake GM (2017) J Am Chem Soc 139:13616–13619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Shalom M, Antonietti M (2017) Appl Catal B-Environ 207:311–315

    Article  CAS  Google Scholar 

  25. Wu X, Fan X, Xie S, Lin J, Cheng J, Zhang Q, Chen L, Wang Y (2018) Nat Catal 1:772–780

    Article  CAS  Google Scholar 

  26. Xie S, Shen Z, Deng J, Guo P, Zhang Q, Zhang H, Ma C, Jiang Z, Cheng J, Deng D (2018) Nat Commun 9:1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chao Y, Zheng J, Chen J, Wang Z, Jia S, Zhang H, Zhu Z (2017) Catal Sci Technol 7:2798–2804

    Article  CAS  Google Scholar 

  28. Liu H, Wang Z, Zhang H, Li L, Li N, Wu M, Chen J, Zhu Z (2017) New J Chem 41:4750–4753

    Article  CAS  Google Scholar 

  29. Xie S, Shen Z, Deng J, Guo P, Zhang Q, Zhang H, Ma C, Jiang Z, Cheng J, Deng D, Wang Y (2018) Nat Commun 9:1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hickman AJ, Sanford MS (2012) Nature 484:177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xi L, Xiao B, Zhang Z, Gong T, Wei S, Yi J, Yao F, Lei L (2016) Nat Commun 7:11129

    Article  CAS  Google Scholar 

  32. José B, María TG, Fernando A, Carlos V (2009) Nat Chem 1:494–499

    Article  CAS  Google Scholar 

  33. Huang X, Wu S, Wu W, Li P, Fu C, Ma S (2016) Nat Commun 7:12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Z, Xie S, Fan W, Zhang Q, Xie Z, Yang W, Wang Y, Lin J, Wu X, Wan H (2016) Catal Sci Technol 6:6485–6489

    Article  CAS  Google Scholar 

  35. Xie S, Shen Z, Zhang H, Cheng J, Zhang Q, Wang Y (2017) Catal Sci Technol 7:923–933

    Article  CAS  Google Scholar 

  36. Fan Y, Bao J, Shi L, Li S, Lu Y, Liu H, Wang H, Zhong L, Sun Y (2018) Catal Lett 148:2274–2282

    Article  CAS  Google Scholar 

  37. Lu H, Zhao B, Zhang D, Lv Y, Shi B, Shi X, Wen J, Yao J, Zhu Z (2013) Photoch Photobio A 272:1–5

    Article  CAS  Google Scholar 

  38. Yang J, Xie D, Zhou H, Chen S, Duan J, Huo C, Li Z (2018) Adv Synth Catal 360:3471–3476

    Article  CAS  Google Scholar 

  39. Fan Y, Li S, Bao J, Shi L, Yang Y, Yu F, Gao P, Wang H, Zhong L, Sun Y (2018) Green Chem 20:3450–3456

    Article  CAS  Google Scholar 

  40. Chai Z, Zeng T, Li Q, Lu L, Xiao W, Xu D (2016) J Am Chem Soc 138:10128–10131

    Article  CAS  PubMed  Google Scholar 

  41. Hu Y, Gao X, Yu L, Wang Y, Ning J, Xu S, Lou X (2013) Angew Chem Int Ed 52:5636–5639

    Article  CAS  Google Scholar 

  42. Wang X, Xu Q, Li M, Shen S, Wang X, Wang Y, Feng Z, Shi J, Han H, Li C (2012) Angew Chem Int Ed 124:13089–13092

    Article  CAS  Google Scholar 

  43. Wang X, Shen S, Feng Z, Li C (2016) Chinese J Catal 37:2059–2068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (21573271, 91545112 and 21703278), the National Key R&D Program of China (2017YFB0602202, 2018YFB0604700), Key Research Program of Frontier Sciences, CAS (Grant No. QYZDB-SSW-SLH035), the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of CAS (Grant No. XDA21020600) and the Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangshu Zhong or Yuhan Sun.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, J., Fan, Y., Zhang, S. et al. Hydrofunctionalization of Olefins to Higher Aliphatic Alcohols via Visible-Light Photocatalytic Coupling. Catal Lett 149, 1651–1659 (2019). https://doi.org/10.1007/s10562-019-02737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02737-3

Navigation