Skip to main content
Log in

Evaluation of Sodium/Protonated Titanate Nanotubes Catalysts in Virgin and Post Consumer PET Depolymerization

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The high PET consume, mainly as bottles, associated with rapid disposal and high resistance to ambient conditions and biological degradation lead to accumulation in the enviromental, constituting a worrying scenario in world level. Chemical recycle PET by glycolysis is an important alternative, once bis(hydroxiethyl)terephthalate (BHET), high added value monomer, can be obtained. In this context, this study approaches the use of titanate nanotubes (i.e. sodium/protonated titanate nanotubes) as catalyst for PET glycolysis. Reactional conditions, the origin and granulometry of PET flakes were evaluated (at 196 °C). Best results (BHET yield > 80%) were obtained for both catalyst in 3 h of reaction. The protonated titanate nanotubes catalyst were more efficient than sodium titanate nanotubes due to greater concentration of Brönsted and Lewis acid sites, indicated by TPD analyzes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dang Y, Luo X, Wang F, Li Y (2016) Waste Manag 52:360–366

    Article  CAS  PubMed  Google Scholar 

  2. Sangalang A, Bartolome L, Kim DH (2015) Polym Degrad Stab 115:45–53

    Article  CAS  Google Scholar 

  3. ABIPET (2013) Indústria do PET no Brasil: Mercados, perspectivas e reciclagem (Panorama 2013). http://www.abipet.org.br/index.html?method=mostrarInstitucional&id=36. Accessed 23 Aug 2018

  4. ABRELPE (2014) Panorama dos Resíduos Sólidos No Brasil. http://www.abrelpe.org.br/panorama_apresentacao.cfm. Accessed 22 Aug 2018

  5. ABRELPE (2015–2016) Panorama dos Resíduos Sólidos no Brasil. http://www.abrelpe.org.br/panorama_apresentacao.cfm. Accessed 22 Aug 2018

  6. ABIPET (2014) Censo da Reciclagem de PET no Brasil – 10a Edição. http://www.abipet.org.br/index.html?method=mostrarDownloads&categoria.id=3. Accessed 4 Sept 2018

  7. CEMPRE (2016) Ciclosoft—2016. http://cempre.org.br/ciclosoft/id/8. Accessed 4 Sept 2018

  8. Wang H, Liu Y, Li Z et al (2009) Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur Polym J 45:1535–1544. https://doi.org/10.1016/j.eurpolymj.2009.01.025

    Article  CAS  Google Scholar 

  9. Imran M, Kim DH, Al-Masry WA et al (2013) Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym Degrad Stab 98:904–915. https://doi.org/10.1016/j.polymdegradstab.2013.01.007

    Article  CAS  Google Scholar 

  10. Viana ME, Riul A, Carvalho GM et al (2011) Chemical recycling of PET by catalyzed glycolysis: kinetics of the heterogeneous reaction. Chem Eng J 173:210–219. https://doi.org/10.1016/j.cej.2011.07.031

    Article  CAS  Google Scholar 

  11. Fang P, Liu B, Xu J et al (2018) High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites. Polym Degrad Stab 156:22–31. https://doi.org/10.1016/j.polymdegradstab.2018.07.004

    Article  CAS  Google Scholar 

  12. Shukla SR, Kulkarni KS (2002) Depolymerization of poly(ethylene terephthalate) waste. J Appl Polym Sci 85:1765–1770. https://doi.org/10.1002/app.10714

    Article  CAS  Google Scholar 

  13. López-Fonseca R, Duque-Ingunza I, de Rivas B et al (2010) Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym Degrad Stab 95:1022–1028. https://doi.org/10.1016/j.polymdegradstab.2010.03.007

    Article  CAS  Google Scholar 

  14. Manjunathan P, Marakatti VS, Chandra P et al (2018) Mesoporous tin oxide: an efficient catalyst with versatile applications in acid and oxidation catalysis. Catal Today 309:61–76. https://doi.org/10.1016/j.cattod.2017.10.009

    Article  CAS  Google Scholar 

  15. Masteri-Farahani M, Mirshekar S (2018) Covalent functionalization of graphene oxide with molybdenum-carboxylate complexes: new reusable catalysts for the epoxidation of olefins. Colloids Surfaces A Physicochem Eng Asp 538:387–392. https://doi.org/10.1016/j.colsurfa.2017.11.025

    Article  CAS  Google Scholar 

  16. Abou Khalil T, Boujday S, Blanchard J, Bergaoui L (2018) Characterization and catalytic activity of Mn(salen) supported on a silica/clay-mineral composite: influence of the complex/support interaction on the catalytic efficiency. Chem Afr 1–11. https://doi.org/10.1007/s42250-018-0023-7

  17. Akiyama S, Miyaji A, Hayashi Y et al (2018) Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst. J Catal 359:184–197. https://doi.org/10.1016/j.jcat.2018.01.001

    Article  CAS  Google Scholar 

  18. Zhu M, Li S, Li Z et al (2012) Investigation of solid catalysts for glycolysis of polyethylene terephthalate. Chem Eng J 185–186:168–177. https://doi.org/10.1016/j.cej.2012.01.068

    Article  CAS  Google Scholar 

  19. Eshaq G, Elmetwally AE (2016) Mg–Zn–Al layered double hydroxide as a regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate. J Mol Liq 214:1–6. https://doi.org/10.1016/j.molliq.2015.11.049

    Article  CAS  Google Scholar 

  20. Kaur M, Malhotra R, Ali A (2018) Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production. Renew Energy 116:109–119. https://doi.org/10.1016/j.renene.2017.09.065

    Article  CAS  Google Scholar 

  21. Lin YF, Huang KW, Ko BT, Lin KYA (2017) Bifunctional ZIF-78 heterogeneous catalyst with dual Lewis acidic and basic sites for carbon dioxide fixation via cyclic carbonate synthesis. J CO2 Util 22:178–183. https://doi.org/10.1016/j.jcou.2017.10.005

    Article  CAS  Google Scholar 

  22. Sun Y, Cao C, Wei F et al (2016) Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols. Sci Bull 61:772–777. https://doi.org/10.1007/s11434-016-1070-6

    Article  CAS  Google Scholar 

  23. Guo Z, Lindqvist K, de la Motte H (2018) An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst. J Appl Polym Sci 135:6–11. https://doi.org/10.1002/app.46285

    Article  CAS  Google Scholar 

  24. Bartolome L, Imran M, Lee KG et al (2014) Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem 16:279–286. https://doi.org/10.1039/C3GC41834K

    Article  CAS  Google Scholar 

  25. Sallem F, Chassagnon R, Megriche A et al (2017) Effect of mechanical stirring and temperature on dynamic hydrothermal synthesis of titanate nanotubes. J Alloys Compd 722:785–796. https://doi.org/10.1016/j.jallcom.2017.06.172

    Article  CAS  Google Scholar 

  26. Monteiro WF, Santos CAB, Hoffmann MS et al (2018) Modified titanate nanotubes for the production of novel aliphatic polyurethane nanocomposites. Polym Compos 1–9. https://doi.org/10.1002/pc.25038

  27. Camposeco R, Castillo S, Mejia-Centeno I et al (2016) Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes. Microporous Mesoporous Mater 236:235–243. https://doi.org/10.1016/j.micromeso.2016.08.033

    Article  CAS  Google Scholar 

  28. Monteiro WF, Vieira MO, Aquino AS et al (2017) CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires. Appl Catal A 544:46–54. https://doi.org/10.1016/j.apcata.2017.07.011

    Article  CAS  Google Scholar 

  29. Coelho DC, Oliveira AC, Filho JM et al (2016) Effect of the active metal on the catalytic activity of the titanate nanotubes for dry reforming of methane. Chem Eng J 290:438–453. https://doi.org/10.1016/j.cej.2016.01.051

    Article  CAS  Google Scholar 

  30. Hernández-Hipólito P, García-Castillejos M, Martínez-Klimova E et al (2014) Biodiesel production with nanotubular sodium titanate as a catalyst. Catal Today 220–222:4–11. https://doi.org/10.1557/adv.2015.52

    Article  CAS  Google Scholar 

  31. de Carvalho DC, Oliveira AC, Ferreira OP et al (2017) Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chem Eng J 313:1454–1467. https://doi.org/10.1016/j.cej.2016.11.047

    Article  CAS  Google Scholar 

  32. Sluban M, Bogdan C, Parvulescu VI et al (2017) Protonated titanate nanotubes as solid acid catalyst for aldol condensation. J Catal 346:161–169. https://doi.org/10.1021/ja100435w

    Article  CAS  Google Scholar 

  33. László B, Baán K, Varga E et al (2016) Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B Environ 199:473–484. https://doi.org/10.1016/j.apcatb.2016.06.057

    Article  CAS  Google Scholar 

  34. Aouadi I, Touati H, Tatibouët JM, Bergaoui L (2017) Titanate nanotubes as ethanol decomposition catalysts: effect of coupling photocatalysis with non-thermal plasma. J Photochem Photobiol A 346:485–492. https://doi.org/10.1016/j.jphotochem.2017.06.030

    Article  CAS  Google Scholar 

  35. Kiatkittipong K, Assabumrungrat S (2017) A comparative study of sodium/hydrogen titanate nanotubes/nanoribbons on destruction of recalcitrant compounds and sedimentation. J Clean Prod 148:905–914. https://doi.org/10.1016/j.jclepro.2017.02.043

    Article  CAS  Google Scholar 

  36. Lima GR, Monteiro WF, Ligabue R, Santana RMC (2017) Titanate nanotubes as new nanostructured catalyst for depolymerization of PET by glycolysis reaction. Mater Res 20:588–595. https://doi.org/10.1590/1980-5373-mr-2017-0645

    Article  Google Scholar 

  37. Kasuga T, Hiramatsu M, Hoson A et al (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163. https://doi.org/10.1021/la9713816

    Article  CAS  Google Scholar 

  38. Monteiro WF, dos Santos CAB, Einloft S et al (2016) Preparation of modified titanate nanotubes and its application in polyurethane nanocomposites. Macromol Symp 368:93–97. https://doi.org/10.1002/masy.201500146

    Article  CAS  Google Scholar 

  39. Al-Sabagh AM, Yehia FZ, Eissa AMF et al (2014) Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate). Polym Degrad Stab 110:364–377. https://doi.org/10.1016/j.polymdegradstab.2014.10.005

    Article  CAS  Google Scholar 

  40. Geng Y, Dong T, Fang P et al (2015) Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polym Degrad Stab 117:30–36. https://doi.org/10.1016/j.polymdegradstab.2015.03.019

    Article  CAS  Google Scholar 

  41. Lin Q, Gu Y, Chen D (2013) Attapulgite-supported aluminum oxide hydroxide catalyst for synthesis of poly(ethylene terephthalate). J Appl Polym Sci 129:2571–2579. https://doi.org/10.1002/app.38973

    Article  CAS  Google Scholar 

  42. López-Fonseca R, Duque-Ingunza I, de Rivas B et al (2011) Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem Eng J 168:312–320. https://doi.org/10.1016/j.cej.2011.01.031

    Article  CAS  Google Scholar 

  43. Syariffuddeen AA, Norhafizah A, Salmiaton AA (2012) Glycolysis of poly (ethylene terephthalate) (PET) waste under conventional convection-conductive glycolysis. Int J Eng Res Technol 1:1–8

    Article  Google Scholar 

  44. Rostamizadeh M, Jafarizad A, Gharibian S (2018) High efficient decolorization of Reactive Red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in electro-Fenton reaction. Sep Purif Technol 192:340–347. https://doi.org/10.1016/j.seppur.2017.10.041

    Article  CAS  Google Scholar 

  45. Goje AS, Mishra S (2003) Chemical kinetics, simulation, and thermodynamics of glycolytic depolymerization of poly(ethylene terephthalate) waste with catalyst optimization for recycling of value added monomeric products. Macromol Mater Eng 288:326–336. https://doi.org/10.1002/mame.200390034

    Article  CAS  Google Scholar 

  46. Yue QF, Wang CX, Zhang LN et al (2011) Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalysts. Polym Degrad Stab 96:399–403. https://doi.org/10.1016/j.polymdegradstab.2010.12.020

    Article  CAS  Google Scholar 

  47. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005

    Article  CAS  Google Scholar 

  48. Chen CH (2003) Study of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. III. Further investigation. J Appl Polym Sci 87:2004–2010. https://doi.org/10.1002/app.11694

    Article  CAS  Google Scholar 

  49. Wang S, Wang C, Wang H et al (2015) Sodium titanium tris(glycolate) as a catalyst for the chemical recycling of poly(ethylene terephthalate) via glycolysis and repolycondensation. Polym Degrad Stab 114:105–114. https://doi.org/10.1016/j.polymdegradstab.2015.02.006

    Article  CAS  Google Scholar 

  50. Tsai CC, Chen LC, Yeh TF, Teng H (2013) In situ Sn2+-incorporation synthesis of titanate nanotubes for photocatalytic dye degradation under visible light illumination. J Alloys Compd 546:95–101. https://doi.org/10.1016/j.jallcom.2012.08.081

    Article  CAS  Google Scholar 

  51. Sim S, Cho EB, Chatterjee S (2016) H2 and CO2 uptake for hydrogen titanate (H2Ti3O7) nanotubes and nanorods at ambient temperature and pressure. Chem Eng J 303:64–72. https://doi.org/10.1016/j.cej.2016.05.099

    Article  CAS  Google Scholar 

  52. Sandoval A, Hernández-Ventura C, Klimova TE (2017) Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel 198:22–30. https://doi.org/10.1016/j.fuel.2016.11.007

    Article  CAS  Google Scholar 

  53. Santos SRA, Jardim IS, Bicalho HA et al (2016) Multifunctional catalysts based on carbon nanotubes and titanate nanotubes for oxidation of organic compounds in biphasic systems. J Colloid Interface Sci 483:211–219. https://doi.org/10.1016/j.jcis.2016.08.025

    Article  CAS  PubMed  Google Scholar 

  54. Viana BC, Ferreira OP, Filho AGS et al (2011) Alkali metal intercalated titanate nanotubes: a vibrational spectroscopy study. Vib Spectrosc 55:183–187. https://doi.org/10.1016/j.vibspec.2010.11.007

    Article  CAS  Google Scholar 

  55. Gomes IS, de Carvalho DC, Oliveira AC et al (2018) On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone. Chem Eng J 334:1927–1942. https://doi.org/10.1016/j.cej.2017.11.112

    Article  CAS  Google Scholar 

  56. Turki A, Kochkar H, Guillard C et al (2013) Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid. Appl Catal B Environ 138–139:401–415. https://doi.org/10.1016/j.apcatb.2013.03.020

    Article  CAS  Google Scholar 

  57. Chen A, Zhao T, Gao H et al (2016) Titanate nanotube-promoted chemical fixation of carbon dioxide to cyclic carbonate: a combined experimental and computational study. Catal Sci Technol 6:780–790. https://doi.org/10.1039/C5CY01024A

    Article  CAS  Google Scholar 

  58. Wang H, Yan R, Li Z et al (2010) Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate). Catal Commun 11:763–767. https://doi.org/10.1016/j.catcom.2010.02.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil (CAPES) – Finance Code 001. The authors thank CNPq and CAPES by scholarships. PUCRS and UFRGS for technical support: the Laboratório Central de Microscopia e Microanálise (LabCEMM/PUCRS) by morphological analyzes, the Prof. Dr. Oscar W. Perez Lopez and the Laboratório de Processos Catalíticos (PROCAT/UFRGS) by TPD analyzes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Ligabue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, G.R., Monteiro, W.F., Scheid, C.M. et al. Evaluation of Sodium/Protonated Titanate Nanotubes Catalysts in Virgin and Post Consumer PET Depolymerization. Catal Lett 149, 1415–1426 (2019). https://doi.org/10.1007/s10562-019-02724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02724-8

Keywords

Navigation