Skip to main content
Log in

Facile Synthesis of CuO–Ni/Al Composites for Catalytic Oxidation of Cyclohexene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CuO–Ni/Al composites were synthesized by electroless deposition and thermal oxidation and characterized by inductively coupled plasma optical emission spectrometry, X-ray powder diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their performances as the heterogeneous catalysts for the solvent-free allylic oxidation of cyclohexene by oxygen were determined. It was found that the CuO contents and the amount of adsorbed oxygen species on the composites could significantly affect their catalytic performances in cyclohexene oxidation. The highest catalytic activity was achieved over CuO–Ni/Al-3 containing 18.5 wt% CuO with the highest amount of adsorbed oxygen species, which resulted in the maximum cyclohexene conversion of 39.1% and the total selectivity of 85.5% to 2-cyclohexene-1-ol, 2-cyclohexene-1-one, 2-cyclohexene-1-hydroperoxide and cyclohexene oxide. In addition, the catalyst was successfully recycled with no significant catalytic activity loss after three cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lim YF, Chua CS, Lee CJJ et al (2014) Phys Chem Chem Phys 16:25928

    Article  CAS  PubMed  Google Scholar 

  2. Sharma JK, Akhtar MS, Ameen S et al (2015) J Alloys Compd 632:321

    Article  CAS  Google Scholar 

  3. Chen LB, Lu N, Xu CM et al (2009) Electrochim Acta 54:4198

    Article  CAS  Google Scholar 

  4. Jammi S, Sakthivel S, Rout L et al (2009) J Org Chem 74:1971

    Article  CAS  PubMed  Google Scholar 

  5. Jiang X, Herricks T, Xia Y (2002) Nano Lett 2:1333

    Article  CAS  Google Scholar 

  6. Horak P, Bejsovec V, Vacik J et al (2016) Appl Surf Sci 389:751

    Article  CAS  Google Scholar 

  7. Li J, Zhang Z, Ji Y et al (2016) Nano Res 9(5):1377

    Article  CAS  Google Scholar 

  8. Nobari N, Behboudnia M, Maleki R (2016) Appl Surf Sci 385:9

    Article  CAS  Google Scholar 

  9. Reddy EL, Lee HC, Kim DH (2015) Int J Hydrogen Energy 40:2509

    Article  CAS  Google Scholar 

  10. Naruškevičius L, Tamašauskaitė-Tamašiūnaitė L, Žielienė A et al (2012) Surf Coat Technol 206:2967

    Article  CAS  Google Scholar 

  11. Huang J, Zhu Y, Zhong H et al (2014) ACS Appl Mater Interfaces 6:7055

    Article  CAS  PubMed  Google Scholar 

  12. Zeng J, Fan H, Wang Y et al (2012) Thin Solid Films 520:5053

    Article  CAS  Google Scholar 

  13. Godhani DR, Nakum HD, Parmar DK et al (2016) J Mol Catal A 415:37

    Article  CAS  Google Scholar 

  14. Zou G, Jing D, Zhong W et al (2016) RSC Adv 6:3729

    Article  CAS  Google Scholar 

  15. Sang X, Zhang J, Wu T et al (2015) RSC Adv 5:67168

    Article  CAS  Google Scholar 

  16. Hao J, Jiao X, Han L et al (2015) RSC Adv 5:13809

    Article  CAS  Google Scholar 

  17. Cheng DH, Xu WY, Zhang ZY et al (1997) Met Finish 95:34

    Article  CAS  Google Scholar 

  18. Gan X, Wu Y, Liu L et al (2007) Surf Coat Technol 201:7018

    Article  CAS  Google Scholar 

  19. Li J, Hayden H, Kohl PA (2004) Electrochim Acta 49:1789

    Article  CAS  Google Scholar 

  20. Figueiredo RT, Martínez-Arias A, Granados ML et al (1998) J Catal 178:146

    Article  CAS  Google Scholar 

  21. Li F, Zhang L, Evans DG et al (2004) Colloids Surf A 244:169

    Article  CAS  Google Scholar 

  22. Kim KM, Kwak BS, Park NK et al (2017) J Ind Eng Chem 46:324

    Article  CAS  Google Scholar 

  23. Igbari O, Xie Y, Jin Z et al (2015) J Alloys Compd 653:219

    Article  CAS  Google Scholar 

  24. Wang Y, Lü Y, Zhan W et al (2015) J Mater Chem A 3:12796

    Article  CAS  Google Scholar 

  25. Sun S, Li C, Zhang D et al (2015) Appl Surf Sci 333:229

    Article  CAS  Google Scholar 

  26. Zhong K, Xue J, Mao Y et al (2012) RSC Adv 2:11520

    Article  CAS  Google Scholar 

  27. Menon U, Galvita VV, Marin GB (2011) J Catal 283:1

    Article  CAS  Google Scholar 

  28. Rao BG, Sudarsanam P, Nallappareddy PRG et al (2017) Catal Commun 101:57

    Article  CAS  Google Scholar 

  29. Panov GI, Dubkov KA, Starokon EV (2006) Catal Today 117:148

    Article  CAS  Google Scholar 

  30. Zhang R, Tang R (2016) J Mater Sci 51:5802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21163011), the Natural Science Foundation of Inner Mongolia (Grant No. 2017MS(LH)0205) and the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJZZ17081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Hao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4400 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, A., Cheng, Y., Bai, Y. et al. Facile Synthesis of CuO–Ni/Al Composites for Catalytic Oxidation of Cyclohexene. Catal Lett 149, 1337–1344 (2019). https://doi.org/10.1007/s10562-019-02719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02719-5

Keywords

Navigation