Skip to main content

Advertisement

Log in

Effect of Ni(OH)2 on CdS@g-C3N4 Composite for Efficient Photocatalytic Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The composites of CdS@g-C3N4/Ni(OH)2 was prepared by photo-deposition method. The co-catalyst Ni2+/Ni clusters reduced from Ni(OH)2 can provide active sites on the surface of CdS@g-C3N4, which significantly accelerate the separation of electron–hole pairs though the special channel formed between CdS and g-C3N4. This way further improved the H2 production activity for 1445.5 µmol, which was 39.5 times and 149.0 times then pure CdS and g-C3N4, respectively. The AQE corresponding to the produced H2 was 5.59%. The morphology, crystal structure and chemical valence of the elements were characterized by SEM, HRTEM, XRD, XPS, UV–Vis, etc. The photoelectrochemical properties of CdS@g-C3N4/Ni(OH)2 was measured by steady-state fluorescence and electrochemical. The results show that composite catalyst posses a high photoelectric density and well light absorption properties. the purpose of high H2 production and fleet charges separation is achieved. Simultaneously, the reaction of H2 production mechanism was proposed under the condition of lactic acid solution as a sacrificial reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng M, Ding Y, Yu L et al (2017) In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution. Adv Funct Mater 27:1605846

    Article  CAS  Google Scholar 

  2. Jin Z-L, Hao X-Q, Min S-X et al (2014) Efficient photocatalytic hydrogen evolution over platinum and boron Co-doped TiO2 photoatalysts. Mater Sci 20:392–395

    Google Scholar 

  3. Zhang Y-P, Jin Z-L, luan A et al (2017) Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1−xS2 modification. Int J Hydrogen energy 43:9914–9923

    Article  CAS  Google Scholar 

  4. Yang H, Jin Z-L, Hu H-Y et al (2017) Fabrication and behaviors of CdS on Bi2MoO6 thin film photoanodes. RSC Adv 7:10774–10781

    Article  CAS  Google Scholar 

  5. Fu J, Chang B-B, Tian Y-L et al (2013) Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in suit synthesis, exceptional activity, high stability and photocatalytic mechanism. J Mater Chem A 8:3083–3090

    Article  CAS  Google Scholar 

  6. Li Y-X, Han P, Hou Y-L et al (2019) Oriented ZnmIn2Sm+3@In2S3 heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution. Appl Catal B 244:604–611

    Article  CAS  Google Scholar 

  7. Yan Z-P, Yu X-X, Han A et al (2014) Noble-metal-free Ni(OH)2-modified CdS/reduced graphene oxide nanocomposite with enhanced photocatalytic activity for hydrogen production under visible light irradiation. J Phys Chem C 40:22896–22903

    Article  CAS  Google Scholar 

  8. Zhang Y-P, Jin Z-L, Su Y-F et al (2019) Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst. Mol Catal 462:46–55

    Article  CAS  Google Scholar 

  9. Li Y-X, Hou Y-L, Fu Q-Y et al (2017) Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl Catal B 206:726–733

    Article  CAS  Google Scholar 

  10. Meissner D, Memming R, Kastening B (1988) Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J Phys Chem 92:3476–3483

    Article  CAS  Google Scholar 

  11. Cao S-W, Yuan Y-P et al (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrogen energy 38:1258–1266

    Article  CAS  Google Scholar 

  12. Spanhel L, Weller H, Henglein A (1987) Photochemistry of semiconductor colloids. XXII: electron injection from illuminated CdS into attached TiO2 and ZnO particles. Am Chem Soc 109:6632–6635

    Article  CAS  Google Scholar 

  13. Li Y-X, Wang H, Peng S-Q (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118:19842–19848

    Article  CAS  Google Scholar 

  14. Zhang W-Y, Li Y-X, Peng S-Q (2017) Template-free synthesis of hollow Ni/reduced graphene oxide composite for efficient H2 evolution. J Mater Chem A 5:13072–13078

    Article  CAS  Google Scholar 

  15. Chai B, Wang X (2016) Sonochemical synthesis of CdS/C3N4 composites with efficient photocatalytic performance under visible light irradiation. J Nanosci Nanotechnol 16:2032–2041

    Article  PubMed  Google Scholar 

  16. Talapin D-V, Shevchenko E-V, Murray C-B (2004) CdSe and CdSe/CdS nanorod solids. J Am Chem Soc 126:12984–12988

    Article  CAS  PubMed  Google Scholar 

  17. Ge L, Zuo F, Liu J et al (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116:13708–13714

    Article  CAS  Google Scholar 

  18. Ran J-R, Yu J-G, Jaroniec M (2011) Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem 13:2708–2713

    Article  CAS  Google Scholar 

  19. Chen X, Shu C, Lin C (2015) Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni(OH)2, precursor for efficiently photocatalytic H2 evolution. Int J Hydrogen energy 40:998–1004

    Article  CAS  Google Scholar 

  20. Yan Z-P, Sun Z-J, Liu X et al (2016) Cadimium sulfide/graphitic carbon nitride heterostructure nanowires loading with nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale 8:4748–4756

    Article  CAS  PubMed  Google Scholar 

  21. Yu J-G, Wang S-H, Cheng B et al (2013) Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal Sci Technol 3:1782–1789

    Article  CAS  Google Scholar 

  22. Hao X-Q, Jin Z-L, Yang H et al (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B 210:45–56

    Article  CAS  Google Scholar 

  23. Zhao H, Jiang P-P, Cai W (2017) Graphitic C3N4 decorated with CoP co-catalyst: enhanced and stable photocatalytic H2 evolution activity from water under visible-light irradiation. Chemistry 12:361–365

    CAS  Google Scholar 

  24. Mendoza-Garcia A, Su D, Sun S (2016) Sea urchin-like cobalteiron phosphide as an active catalyst for oxygen evolution reaction. Nanoscale 8:3244–3247

    Article  CAS  PubMed  Google Scholar 

  25. Languer M-P, Scheffer F-R, Feil A-F et al (2013) Photo-induced reforming of alcohols with improved hydrogen apparent quantum yield on TiO2, nanotubes loaded with ultra-small Pt nanoparticles. Int J Hydrogen Energy 38:14440–14450

    Article  CAS  Google Scholar 

  26. Zhang Y-J, Guo L-J, Yan W et al (2006) Experimental and calculation of energy conversion efficiency and quantum yield in the system of hydrogen photoproduction by water splitting. Acta Energiae Sol Sin 27:1113–1116

    CAS  Google Scholar 

  27. Zhang F, Chai B, Liao X et al (2014) Preparation and visible light photocatalytic properties of rGO/g-C3N4 composites. Chin J Inorg Chem 30:821–827

    Google Scholar 

  28. Zheng D-D, Zhang G-G, Hou Y-D et al (2016) Layering MoS2 on soft hollow g-C3N4 nanostructures for photocatalytic hydrogen evolution. Appl Catal A 521:2–8

    Article  CAS  Google Scholar 

  29. Liu Y, Jiang J-Z, Sun Y-J et al (2017) NiO and Co3O4 co-doped g-C3N4 nanocomposites with excellent photoelectrochemical properties under visible light for detection of tetrabromobisphenol-A. RSC Adv 7:36015–36020

    Article  CAS  Google Scholar 

  30. Lei Y-G, Yang C, Hou J-H et al (2017) Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots. Appl Catal B 216:59–69

    Article  CAS  Google Scholar 

  31. Hao X-Q, Jin Z-L, Xu J et al (2016) Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. Superlattice Microstruct 94:237–244

    Article  CAS  Google Scholar 

  32. Li H-Q, Liu Y-X, Cui Y-M et al (2016) Facile synthesis and enhanced visible-light photoactivity of DyVO4/g-C3N4I composite semiconductors. Appl Catal B 183:426–432

    Article  CAS  Google Scholar 

  33. Yang H, Jin Z-L, Wang G-R et al (2018) Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation. Dalton Trans 47:6973–6985

    Article  CAS  PubMed  Google Scholar 

  34. Peng S-Q, Yang Y, Tan J-N et al (2018) In situ loading of Ni2P on Cd0.5Zn0.5S with red phosphorus for enhanced visible light photocatalytic H2 evolution. Appl Surf Sci 447:822–828

    Article  CAS  Google Scholar 

  35. Hao X-Q, Wang Y-C, Zhou J et al (2018) Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible light driven hydrogen evolution. Appl Catal B 221:302–311

    Article  CAS  Google Scholar 

  36. Zheng M, Cao X, Ding Y et al (2018) Boosting photocatalytic water oxidation achieved by BiVO4, coupled with iron-containing polyoxometalate: analysis the true catalyst. J Catal 363:109–116

    Article  CAS  Google Scholar 

  37. Chen S-F, Hu Y-F, Meng S-G et al (2014) Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3. Appl Catal B 151:564–573

    Article  CAS  Google Scholar 

  38. Yang P-J, Ou H-H, Fang Y-X et al (2017) A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew Chem Int Ed 56:3992–3996

    Article  CAS  Google Scholar 

  39. Bi G-C, Wen J-Q, Li X et al (2016) Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts. Rsc Adv 6:31497–31506

    Article  CAS  Google Scholar 

  40. Yu J, Wang S, Cheng B et al (2013) Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal Sci Technol 3:1782–1789

    Article  CAS  Google Scholar 

  41. Fu Y-J, Liu C-A, Zhu C et al (2018) High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting. Inorg Chem Front 7:1646–1652

    Article  Google Scholar 

  42. Mahadeo A-M, Pravin S-S, Hyun H-L et al (2017) Highly efficient and stable 3D Ni(OH)2/CdS/ZnIn2S4/TiO2 heterojunction under solar light: effect of an improved TiO2/FTO interface and cocatalyst. Sol Energy Mater Sol C 159:475–487

    Article  CAS  Google Scholar 

  43. Pouilleau J, Devilliers D, Groult H et al (1997) Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy. J Mater Sci 32:5645–5651

    Article  CAS  Google Scholar 

  44. Thommes M, Kaneko K, Neimark A-V, Sing KSW, Rodriguez-Reinoso F, Rouquerol J et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese National Natural Science Foundation (21862002 and 41663012), the Graduate student innovation project of North Minzu University (YCX18076), the project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, the new technology and system for clean energy catalytic production, Major scientific project of North Minzu University (ZDZX201803), the key scientific research projects of North Minzu University (No. 2017KJ16) and the Laboratory for the development and application of electrochemical energy conversion technology, North Minzu University and the Ningxia low-grade resource high value utilization and environmental chemical integration technology innovation team project of North Minzu University.

Author information

Authors and Affiliations

Authors

Contributions

YZ and ZJ conceived and designed the experiments; YZ, XY, and GW performed the experiments; ZJ and HW contributed reagents/materials and analysis tools; YZ wrote the paper.

Corresponding author

Correspondence to Zhiliang Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. There are no conflicts of interest for each contributing author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, Z., Yan, X. et al. Effect of Ni(OH)2 on CdS@g-C3N4 Composite for Efficient Photocatalytic Hydrogen Production. Catal Lett 149, 1174–1185 (2019). https://doi.org/10.1007/s10562-019-02708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02708-8

Keywords

Navigation