Skip to main content
Log in

Z-Scheme Ag3PO4/g-C3N4 Nanocomposites for Robust Cocatalyst-Free Photocatalytic H2 Evolution Under Visible Light Irradiation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ag3PO4/g-C3N4 nanocomposite photocatalysts were synthesized by calcining the mixture of urea and trace amount of Ag3PO4 microcrystals at 600 °C, in which Ag3PO4 nanoparticles with size of 20–30 nm were wrapped with g-C3N4 layers. The obtained Ag3PO4/g-C3N4 composites exhibited efficient utilization of visible light and separation of photoinduced electron–hole pairs, resulting in enhanced photocatalytic activity for H2 evolution. The optimum photocatalytic H2 evolution rate under visible light without Pt co-catalyst for 0.04AP-CN composite was 89.4 µmol/h, which is 3.34 times of that of g-C3N4 (26.7 µmol/h). The H2 evolution rate for 0.04AP-CN with 3 wt% Pt co-catalyst was up to 273.6 µmol/h, which is 2.39 times of that g-C3N4 (114.4 µmol/h). The performance of Ag3PO4/g-C3N4 composite was enhanced significantly due to the synergistic effect of the interface formed between Ag3PO4 and g-C3N4.

Graphical Abstract

Photocatalytic mechanism of the Ag3PO4/g-C3N4 composite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu C, Tang J, Chen HM, Liu B, Yang P (2013) A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett 13:2989–2992

    Article  CAS  PubMed  Google Scholar 

  2. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  CAS  PubMed  Google Scholar 

  3. Liu B, Wu CH, Miao JW, Yang PD (2014) All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8:11739–11744

    Article  CAS  PubMed  Google Scholar 

  4. Cui YJ (2015) In-situ synthesis of C3N4/CdS composites with enhanced photocatalytic properties. Chin J Catal 36:372–379

    Article  CAS  Google Scholar 

  5. Liu G, Wang T, Zhang H, Meng X, Hao D, Chang K, Li P, Kako T, Ye J (2015) Nature-Inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew Chem Int Ed Engl 54:13561–13565

    Article  CAS  PubMed  Google Scholar 

  6. Wu P, Wang J, Zhao J, Guo L, Osterloh FE (2014) High alkalinity boosts visible light driven H2 evolution activity of g-C3N4 in aqueous methanol. Chem Commun 50:15521–15524

    Article  CAS  Google Scholar 

  7. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  CAS  Google Scholar 

  8. Dou H, Chen L, Zheng S, Zhang Y, Xu GQ (2018) Band structure engineering of graphitic carbon nitride via Cu2+/Cu+ doping for enhanced visible light photoactivity. Mate Chem Phys 214:482–488

    Article  CAS  Google Scholar 

  9. Liu E, Chen J, Ma Y, Feng J, Jia J, Fan J, Hu X (2018) Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting. J Colloid Interface Sci 524:313–324

    Article  CAS  PubMed  Google Scholar 

  10. Pan C, Xu J, Wang Y, Li D, Zhu Y (2012) Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by Self-assembly. Adv Funct Mater 22:1518–1524

    Article  CAS  Google Scholar 

  11. Wang X, Zhang L, Lin H, Nong Q, Wu Y, Wu T, He Y (2014) Synthesis and characterization of a ZrO2/g-C3N4 composite with enhanced visible-light photoactivity for rhodamine degradation. RSC Adv 4:40029–40035

    Article  CAS  Google Scholar 

  12. He K, Xie J, Liu ZQ, Li N, Chen X, Hu J, Li X (2018) Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J Mater Chem A 6:13110–13122

    Article  CAS  Google Scholar 

  13. Bi L, Xu D, Zhang L, Lin Y, Wang D, Xie T (2015) Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending. Phys Chem Chem Phys 17:29899–29905

    Article  CAS  PubMed  Google Scholar 

  14. Ren HT, Jia SY, Wu Y, Wu SH, Zhang TH, Han X (2014) Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light. Ind Eng Chem Res 53:17645–17653

    Article  CAS  Google Scholar 

  15. Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:L26–L29

    Article  CAS  Google Scholar 

  16. Wei H, McMaster WA, Tan JZY, Chen D, Caruso RA (2018) Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J Mater Chem A 6:7236–7245

    Article  CAS  Google Scholar 

  17. Chai B, Peng T, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B 129:182–193

    Article  CAS  Google Scholar 

  19. Wang W, Yu JC, Xia D, Wong PK, Li Y (2013) Graphene and g-C3N4 nanosheets cowrapped elemental alpha-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732

    Article  CAS  PubMed  Google Scholar 

  20. Hu S, Qu X, Li P, Wang F, Li Q, Song L, Zhao Y, Kang X (2018) Photocatalytic oxygen reduction to hydrogen peroxide over copper doped gaphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites, Chem. Engineering J 334:410–418

    CAS  Google Scholar 

  21. Dou H, Zheng S, Zhang Y (2017) Graphitic carbon nitride with S and Fe(III) codoping for improved photodegradation performance. Catal Lett 148:601–611

    Article  CAS  Google Scholar 

  22. Chen F, Yang Q, Wang Y, Zhao J, Wang D, Li X, Guo Z, Wang H, Deng Y, Niu C, Zeng G (2017) Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl Catal B 205:133–147

    Article  CAS  Google Scholar 

  23. Wang X, Yan J, Ji H, Chen Z, Xu Y, Huang L, Zhang Q, Song Y, Xu H, Li H (2016) MO degradation by Ag-Ag2O/g-C3N4 composites under visible-light irradation. Springerplus 5:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou T, Xu Y, Xu H, Wang H, Da Z, Huang S, Ji H, Li H (2014) In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N4 and its activity. Ceram Int 40:9293–9301

    Article  CAS  Google Scholar 

  25. Bi Y, Ouyang S, Umezawa N, Cao J, Ye J (2011) Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J Am Chem Soc 133:6490–6492

    Article  CAS  PubMed  Google Scholar 

  26. Hou Y, Zuo F, Ma Q, Wang C, Bartels L, Feng P (2012) Ag3PO4 Oxygen Evolution Photocatalyst Employing Synergistic Action of Ag/AgBr Nanoparticles and Graphene Sheets. J Phy Chem C 116:20132–20139

    Article  CAS  Google Scholar 

  27. He P, Song L, Zhang S, Wu X, Wei Q (2014) Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance. Mater Res Bull 51:432–437

    Article  CAS  Google Scholar 

  28. Kumar S, Surendar T, Baruah A, Shanker V (2013) Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J Mater Chem A 1:5333

    Article  CAS  Google Scholar 

  29. Ren Y, Zhao Q, Li X, Xiong W, Tade M, Liu L (2014) 2D Porous graphitic C3N4 nanosheets/Ag3PO4 nanocomposites for enhanced visible-light photocatalytic degradation of 4-chlorophenol. J Nanopart Res 16:2532

    Article  CAS  Google Scholar 

  30. Jiang D, Zhu J, Chen M, Xie J (2014) Highly efficient heterojunction photocatalyst based on nanoporous g-C3N4 sheets modified by Ag3PO4 nanoparticles: synthesis and enhanced photocatalytic activity. J Colloid Interface Sci 417:115–120

    Article  CAS  PubMed  Google Scholar 

  31. He Y, Zhang L, Teng B, Fan M (2015) New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ Sci Technol 49:649–656

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, Tang H, Xu J, Antonietti M, Shalom M (2015) Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution. Chem Sus Chem 8:1350–1358

    Article  CAS  Google Scholar 

  33. Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KG (2012) Kinetics and mechanism of light-driven oxygen evolution at thin film alpha-Fe2O3 electrodes. Chem Commun 48:2027–2029

    Article  CAS  Google Scholar 

  34. Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207

    Article  CAS  PubMed  Google Scholar 

  35. Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko OV, Khavryuchenko VD, Ricci PC, Strunk J, Cremer T, Kolbeck C, Beranek R (2011) Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Phys Chem Chem Phys 13:21511–21519

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48:12017–12019

    Article  CAS  Google Scholar 

  37. Lin L, Ren W, Wang C, Asiri AM, Zhang J, Wang X (2018) Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production. Appl Catal B 231:234–241

    Article  CAS  Google Scholar 

  38. Zhu Y, Ren J, Yang X, Chang G, Bu Y, Wei G, Han W, Yang D (2017) Interface engineering of 3D BiVO4/Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. J Mater Chem A 5:9952–9959

    Article  CAS  Google Scholar 

  39. Dou H, Long D, Zheng S, Zhang Y (2018) A facile approach to synthesize graphitic carbon nitride microwires for enhanced photocatalytic H2 evolution from water splitting under full solar spectrum. Catal Sci Technol 8:3599–3609

    Article  CAS  Google Scholar 

  40. Li T, He Y, Cai J, Lin H, Luo M, Zhao L (2013) Preparation and characterization of Ag-loaded SmVO4 for photocatalysis application. Photochem Photobiol 89:529–535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21173170, 51801164).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yongping Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 778 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, D., Dou, H., Rao, X. et al. Z-Scheme Ag3PO4/g-C3N4 Nanocomposites for Robust Cocatalyst-Free Photocatalytic H2 Evolution Under Visible Light Irradiation. Catal Lett 149, 1154–1166 (2019). https://doi.org/10.1007/s10562-019-02704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02704-y

Keywords

Navigation