Skip to main content

Advertisement

Log in

Tree-Like NiS2/MoS2-RGO Nanocomposites as pH Universal Electrocatalysts for Hydrogen Evolution Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of transition metal dichalcogenides (TMDs) is largely dependent on the exposed massive active sites and electrical conductivity of the catalysts. In this work, a tree-like nanocomposite (NiS2/MoS2-RGO) which is composed of bimetal sulfide (NiS2/MoS2) nanocomposites uniformly anchored on the surface of reduced graphene oxide (RGO) was successfully synthesized. As a catalytic material for the hydrogen evolution reaction (HER), the NiS2/MoS2-RGO composites exhibit significantly enhanced electrocatalytic activity and impressive long-term stability for the hydrogen evolution reaction over a wide pH range. The tree-like NiS2/MoS2-RGO nanocomposites afford a current density (η10) of 10 mA/cm2 at small overpotentials of 172, 144 and 229 mV, and have a small Tafel slope of 51, 82 and 103 mV/dec in acidic, alkaline and neutral solution, respectively. Further studies reveal that the effective activities benefit from the abundant active edge sites and defects of NiS2/MoS2 nanocomposites and the excellent conductivity of RGO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vij V, Sultan S, Harzandi AM et al (2017) ACS Catal 7:7196–7225

    Article  CAS  Google Scholar 

  2. Walter MG, Warren EL, McKone JR et al (2010) Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  3. Abbasi T, Abbasi SA (2011) Renew Sustain Energy Rev 15:3034–3040

    Article  Google Scholar 

  4. Bard AJ, Fox MA (1995) Acc Chem Res 28:141–145

    Article  CAS  Google Scholar 

  5. Cheng L, Huang W, Gong Q et al (2014) Angew Chem Int Ed 53:7860–7863

    Article  CAS  Google Scholar 

  6. Li J, Wang Y, Zhou T et al (2015) J Am Chem Soc 137:14305–14312

    Article  CAS  PubMed  Google Scholar 

  7. Greeley J, Jaramillo TF, Bonde J et al (2011) Mater Sustain Energy 280–284

  8. Li Y, Wang H, Xie L et al (2011) J Am Chem Soc 133:7296–7299

    Article  CAS  PubMed  Google Scholar 

  9. Yu L, Xia BY, Wang X et al (2016) Adv Mater 28:92–97

    Article  CAS  Google Scholar 

  10. Faber MS, Dziedzic R, Lukowski MA et al (2014) J Am Chem Soc 136:10053–10061

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Cui R, Li X et al (2017) J Mater Chem A 5:23536–23542

    Article  CAS  Google Scholar 

  12. Yu XY, Feng Y, Jeon Y et al (2016) Adv Mater 28:9006–9011

    Article  CAS  PubMed  Google Scholar 

  13. Hou CC, Cao S, Fu WF et al (2015) ACS Appl Mater Interfaces 7:28412–28419

    Article  CAS  PubMed  Google Scholar 

  14. Stern LA, Feng L, Song F et al (2015) Energy Environ Sci 8:2347–2351

    Article  CAS  Google Scholar 

  15. Tian J, Liu Q, Asiri AM et al (2014) J Am Chem Soc 136:7587–7590

    Article  CAS  PubMed  Google Scholar 

  16. Wang T, Wang X, Liu Y et al (2016) Nano Energy 22:111–119

    Article  CAS  Google Scholar 

  17. Ma FX, Wu HB, Xia BY et al (2015) Angew Chem 127:15615–15619

    Article  Google Scholar 

  18. Yu ZY, Duan Y, Gao MR et al (2017) Chem Sci 8:968–973

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Wang Q, Wang L et al (2015) Nanoscale 7:10391–10397

    Article  CAS  PubMed  Google Scholar 

  20. Kong D, Wang H, Lu Z et al (2014) J Am Chem Soc 136:4897–4900

    Article  CAS  PubMed  Google Scholar 

  21. Cui Y, Zhou C, Li X et al (2017) Electrochim Acta 228:428–435

    Article  CAS  Google Scholar 

  22. Najafi L, Bellani S, Oropesa-Nuñez R et al (2018) Adv Energy Mater 8:1801764

    Article  CAS  Google Scholar 

  23. Faber MS, Lukowski MA, Ding Q et al (2014) J Phys Chem C 118:21347–21356

    Article  CAS  Google Scholar 

  24. Tang C, Pu Z, Liu Q et al (2015) Electrochim Acta 153:508–514

    Article  CAS  Google Scholar 

  25. Hinnemann B, Moses PG, Bonde J et al (2005) J Am Chem Soc 127:5308–5309

    Article  CAS  PubMed  Google Scholar 

  26. Xie J, Zhang H, Li S et al (2013) Adv Mater 25:5807–5813

    Article  CAS  Google Scholar 

  27. Wang D, Pan Z, Wu Z et al (2014) J Power Sources 264:229–234

    Article  CAS  Google Scholar 

  28. Yin Y, Han J, Zhang Y et al (2016) J Am Chem Soc 138:7965–7972

    Article  CAS  PubMed  Google Scholar 

  29. Wiensch JD, John J, Velazquez JM et al (2017) ACS Energy Lett 2:2234–2238

    Article  CAS  Google Scholar 

  30. Laursen AB, Kegnæs S, Dahl S et al (2012) Energy Environ Sci 5:5577–5591

    Article  CAS  Google Scholar 

  31. Park S, Park J, Abroshan H et al (2018) ACS Energy Lett 3:2685–2693

    Article  CAS  Google Scholar 

  32. Bonde J, Moses PG, Jaramillo TF et al (2009) Faraday Discuss 140:219–231

    Article  Google Scholar 

  33. Ma L, Hu Y, Zhu G et al (2016) Chem Mater 28:5733–5742

    Article  CAS  Google Scholar 

  34. Hu WH, Shang X, Han GQ et al (2016) Carbon 100:236–242

    Article  CAS  Google Scholar 

  35. Zhou W, Zhou K, Hou D et al (2014) ACS Appl Mater Interfaces 6:21534–21540

    Article  CAS  PubMed  Google Scholar 

  36. Xiang Z, Zhang Z, Xu X et al (2016) Carbon 98:84–89

    Article  CAS  Google Scholar 

  37. Ma CB, Qi X, Chen B et al (2014) Nanoscale 6:5624–5629

    Article  CAS  PubMed  Google Scholar 

  38. Ding Q, Song B, Xu P et al (2016) Chem 1:699–726

    Article  CAS  Google Scholar 

  39. Kuang P, Tong T, Fan K et al (2017) ACS Catal 7:6179–6187

    Article  CAS  Google Scholar 

  40. Yang Y, Zhang K, Lin H et al (2017) ACS Catal 7:2357–2366

    Article  CAS  Google Scholar 

  41. Guo Y, Shang C, Zhang X et al (2016) Chem Commun 52:11795–11798

    Article  CAS  Google Scholar 

  42. Wang DY, Gong M, Chou HL et al (2015) J Am Chem Soc 137:1587–1592

    Article  CAS  PubMed  Google Scholar 

  43. Huang ZF, Song J, Li K et al (2016) J Am Chem Soc 138:1359–1365

    Article  CAS  PubMed  Google Scholar 

  44. Peng Z, Jia D, Al-Enizi AM et al (2015) Adv Energy Mater 5:1402031

    Article  CAS  Google Scholar 

  45. Huang J, Hou D, Zhou Y et al (2015) J Mater Chem A 3:22886–22891

    Article  CAS  Google Scholar 

  46. Miao J, Xiao FX, Yang HB et al (2015) Sci Adv 1:e1500259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ezeigwe ER, Khiew PS, Siong CW et al (2017) Ceram Int 43:13772–13780

    Article  CAS  Google Scholar 

  48. Cote LJ, Kim F, Huang J (2008) J Am Chem Soc 131:1043–1049

    Article  CAS  Google Scholar 

  49. Bertrand PA (1991) Phys Rev B 44:5745

    Article  CAS  Google Scholar 

  50. Pu J, Yomogida Y, Liu KK et al (2012) Nano Lett 12:4013–4017

    Article  CAS  PubMed  Google Scholar 

  51. Caban-Acevedo M, Liang D, Chew KS et al (2013) ACS Nano 7:1731–1739

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Yang B, Li Z et al (2015) RSC Adv 5:32976–32982

    Article  CAS  Google Scholar 

  53. Dong B, Zhou H, Liang J et al (2014) Nanotech 25:435403

    Article  CAS  Google Scholar 

  54. Jiang N, Tang Q, Sheng M et al (2016) Catal Sci Tech 6:1077–1084

    Article  CAS  Google Scholar 

  55. Zhang J, Liu S, Liang H et al (2015) Adv Mater 27:7426–7431

    Article  CAS  PubMed  Google Scholar 

  56. Zhu H, Zhang J, Yanzhang R et al (2015) Adv Mater 27:4752–4759

    Article  CAS  PubMed  Google Scholar 

  57. Zhou M, Ouyang R, Li Y et al (2017) Electrochim Acta 246:9–16

    Article  CAS  Google Scholar 

  58. Yu M, Zhao S, Feng H et al (2017) ACS Energy Lett 2:1862–1868

    Article  CAS  Google Scholar 

  59. Min S, Zhao C, Zhang Z et al (2015) J Mater Chem A 3:3641–3650

    Article  CAS  Google Scholar 

  60. Conway BE, Tilak BV (2002) Electrochim Acta 47:3571–3594

    Article  CAS  Google Scholar 

  61. Jin Z, Li P, Huang X et al (2014) J Mater Chem A 2:18593–18599

    Article  CAS  Google Scholar 

  62. Liao L, Zhu J, Bian X et al (2013) Adv Funct Mater 23:5326–5333

    Article  CAS  Google Scholar 

  63. Zhou W, Lu J, Zhou K et al (2016) Nano Energy 28:143–150

    Article  CAS  Google Scholar 

  64. Sivanantham A, Ganesan P, Shanmugam S (2016) Adv Funct Mater 26:4661–4672

    Article  CAS  Google Scholar 

  65. Wang J, Zhong HX, Wang ZL et al (2016) ACS Nano 10:2342–2348

    Article  CAS  PubMed  Google Scholar 

  66. Zhang H, Li Y, Zhang G et al (2014) Electrochim Acta 148:170–174

    Article  CAS  Google Scholar 

  67. Durst J, Siebel A, Simon C et al (2014) Energy Environ Sci 7:2255–2260

    Article  CAS  Google Scholar 

  68. Subbaraman R, Tripkovic D, Chang KC et al (2012) Nat Mater 11:550

    Article  CAS  PubMed  Google Scholar 

  69. Subbaraman R, Tripkovic D, Strmcnik D et al (2011) Science 334:1256–1260

    Article  CAS  PubMed  Google Scholar 

  70. You B, Jiang N, Sheng M et al (2015) ACS Catal 6:714–721

    Article  CAS  Google Scholar 

  71. Benck JD, Hellstern TR, Kibsgaard J et al (2014) Acs Catal 4:3957–3971

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Nos. 21165016, 21175108, 21265018) and the Science and Technology Support Projects of Gansu Province (Nos. 1011GKCA025, 090GKCA036, 1208RJZM289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibin Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Guo, T., Sun, S. et al. Tree-Like NiS2/MoS2-RGO Nanocomposites as pH Universal Electrocatalysts for Hydrogen Evolution Reaction. Catal Lett 149, 1197–1210 (2019). https://doi.org/10.1007/s10562-019-02698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02698-7

Keywords

Navigation