Skip to main content

Effect of Addition of K, Rh and Fe Over Mo/HZSM-5 on Methane Dehydroaromatization Under Non-oxidative Conditions

Abstract

Methane dehydroaromatization was studied over a series of K, Rh and Fe promoted 10 wt% Mo/HZSM-5 catalysts with different promoter loadings of 0.5, 1 and 1.5 wt% at 750 °C in a recirculating batch reactor. All the catalysts were reduced in H2 at 750 °C prior to methane activation. K, Rh and Fe- promoted Mo/HZSM-5 catalysts were prepared by sequential impregnation. N-propylamine-temperature programmed desorption confirmed the significant modification in the acidity of the catalyst upon addition of K. Compared to 10 wt% Mo/HZSM-5, the conversion of CH4 remained nearly unchanged for 1 wt% K-promoted catalyst but decreased by ~ 46% for 1 wt% Rh promoted catalyst and by ~ 4.3% for Fe-promoted catalyst after 255 min of reaction. The conversion of CH4 further decreased with increase in K and Rh loading but increased with increase in Fe loading. Compared to Rh and Fe-promoted catalysts, K-promoted catalyst exhibited better selectivity for C6H6 after 255 min of reaction. The temperature programmed oxidation results revealed that K promoted catalyst significantly reduced coking. 1 wt% K added to 10 wt% Mo/HZSM-5 exhibited optimum performance, where the conversion of CH4 was ~ 28%, selectivity of C6H6 was ~ 50% while the selectivity of carbon was ~ 47% after 255 min of reaction.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Xu Y, Bao X, Lin L (2003) J Catal 216:386–395

    CAS  Google Scholar 

  2. 2.

    Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65–139

    CAS  Google Scholar 

  3. 3.

    Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y (1993) Catal Lett 21:35–41

    CAS  Google Scholar 

  4. 4.

    Chen L, Lin L, Xu Z, Li X, Zhang T (1995) J Catal 157:190–200

    CAS  Google Scholar 

  5. 5.

    Liu B, Zhang Y, Liu J, Tian M, Zhang F, Au C, Cheung A-C (2011) J Phys Chem C 115:16954–16962

    CAS  Google Scholar 

  6. 6.

    Xiong Z-T, Zhang H-B, Lin G-D, Zeng J-L (2001) Catal Lett 74:233–239

    CAS  Google Scholar 

  7. 7.

    Zeng JL, Xiong ZT, Zhang HB, Lin GD, Tsai K (1998) Catal Lett 53:119–124

    CAS  Google Scholar 

  8. 8.

    Wang L, Ohnishi R, Ichikawa M (2000) J Catal 190:276–283

    CAS  Google Scholar 

  9. 9.

    Shen XC, Lou H, Hu K, Zheng XM (2007) Chin Chem Lett 18:479–482

    CAS  Google Scholar 

  10. 10.

    Zhang C-L, Li S, Yuan Y, Zhang W-X, Wu T-H, LIn L-W (1998) Catal Lett 56:207–213

    CAS  Google Scholar 

  11. 11.

    Wong S-T, Xu Y, Liu W, Wang L, Guo X (1996) Appl Catal A 136:7–17

    CAS  Google Scholar 

  12. 12.

    Wu P, Kan Q, Wang D, Xing H, Jia M, Wu T (2005) Catal Commun 6:449–454

    CAS  Google Scholar 

  13. 13.

    Wang D, Kan Q, Xu N, Wu P, Wu T (2004) Catal Today 93:75–80

    Google Scholar 

  14. 14.

    Ma D, Shu Y, Han X, Liu X, Xu Y, Bao X (2001) J Phys Chem B 105:1786–1793

    CAS  Google Scholar 

  15. 15.

    Ding W, Meitzner GD, Iglesia E (2002) J Catal 206:14–22

    CAS  Google Scholar 

  16. 16.

    Li Y, Liu L, Huang X, Liu X, Shen W, Xu Y, Bao X (2007) Catal Commun 8:1567–1572

    CAS  Google Scholar 

  17. 17.

    Zhu P, Yang G, Sun J, Fan R, Zhang P, Yoneyama Y, Tsubaki N (2017) J Mater Chem A 5:8599–8607

    CAS  Google Scholar 

  18. 18.

    Zhang Y, Jiang H (2018) Chem Commun 54:10343–10346

    CAS  Google Scholar 

  19. 19.

    Ma H, Kojima R, Kikuchi S, Ichikawa M (2005) Catal Lett 104:63–66

    CAS  Google Scholar 

  20. 20.

    Ohnishi R, Liu S, Dong Q, Wang L, Ichikawa M (1999) J Catal 182:92–103

    CAS  Google Scholar 

  21. 21.

    Lacheen HS, Iglesia E (2005) J Catal 230:173–185

    CAS  Google Scholar 

  22. 22.

    Liu Z, Nutt MA, Iglesia E (2002) Catal Lett 81:271–279

    Google Scholar 

  23. 23.

    Tan P (2018) Catal Commun 103:101–104

    CAS  Google Scholar 

  24. 24.

    Burns S, Hargreaves J, Pal P, Parida K, Parija S (2006) Catal Today 114:383–387

    CAS  Google Scholar 

  25. 25.

    Rodrigues ACC, Monteiro JLF (2008) Catal Commun 9:1060–1065

    CAS  Google Scholar 

  26. 26.

    Dong Q, Zhao X, Wang J, Ichikawa M (2004) J Nat Gas Chem 13:36–40

    CAS  Google Scholar 

  27. 27.

    Xu Y, Wang J, Suzuki Y, Zhang Z-G (2012) Catal Today 185:41–46

    CAS  Google Scholar 

  28. 28.

    Masiero SS, Marcilio NR, Perez-Lopez OW (2009) Catal Lett 131:194–202

    CAS  Google Scholar 

  29. 29.

    Aboul-Gheit AK, Awadallah AE, Aboul-Enein AA, Mahmoud A-LH (2011) Fuel 90:3040–3046

    CAS  Google Scholar 

  30. 30.

    Liu B, Yang Y, Sayari A (2001) Appl Catal A 214:95–102

    CAS  Google Scholar 

  31. 31.

    Tshabalala TE, Coville NJ, Scurrell MS (2014) Appl Catal A 485:238–244

    CAS  Google Scholar 

  32. 32.

    Cheng X, Yan P, Zhang X, Yang F, Dai C, Li D, Ma X-X (2017) Mol Catal 437:114–120

    CAS  Google Scholar 

  33. 33.

    Iliuta MC, Iliuta I, Grandjean BP, Larachi F (2003) Ind Eng Chem Res 42:3203–3209

    CAS  Google Scholar 

  34. 34.

    Larachi F, Oudghiri-Hassani H, Iliuta M, Grandjean B, McBreen P (2002) Catal Lett 84:183–192

    CAS  Google Scholar 

  35. 35.

    Xu Y, Wang J, Suzuki Y, Zhang Z-G (2011) Appl Catal A 409:181–193

    Google Scholar 

  36. 36.

    Xu Y, Suzuki Y, Zhang Z-G (2013) Appl Catal A 452:105–116

    CAS  Google Scholar 

  37. 37.

    Sun K, Gong W, Gasem K, Adidharma H, Fan M, Chen R (2017) Ind Eng Chem Res 56:11398–11412

    CAS  Google Scholar 

  38. 38.

    Sun K, Ginosar DM, He T, Zhang Y, Fan M, Chen R (2018) Ind Eng Chem Res 57:1768–1789

    CAS  Google Scholar 

  39. 39.

    Abdelsayed V, Shekhawat D, Smith MW (2015) Fuel 139:401–410

    CAS  Google Scholar 

  40. 40.

    Aboul-Gheit AK, El-Masry MS, Awadallah AE (2012) Fuel Process Technol 102:24–29

    CAS  Google Scholar 

  41. 41.

    Xiong Z-T, Chen L-L, Zhang H-B, Zeng J-L, Lin G-D (2001) Catal Lett 74:227–232

    CAS  Google Scholar 

  42. 42.

    Tshabalala TE, Coville NJ, Anderson JA, Scurrell MS (2015) Appl Catal A 503:218–226

    CAS  Google Scholar 

  43. 43.

    Pinglian T, Zhusheng X, Tao Z, Liayuan C, Liwu L (1997) React Kinet Catal Lett 61:391–396

    CAS  Google Scholar 

  44. 44.

    Liu B, Jiang L, Sun H, Au C (2007) Appl Surf Sci 253:5092–5100

    CAS  Google Scholar 

  45. 45.

    Shu Y, Xu Y, Wong S-T, Wang L, Guo X (1997) J Catal 170:11–19

    CAS  Google Scholar 

  46. 46.

    Martínez A, Peris E (2016) Appl Catal A 515:32–44

    Google Scholar 

  47. 47.

    Wang L, Xu Y, Wong S-T, Cui W, Guo X (1997) Appl Catal A 152:173–182

    CAS  Google Scholar 

  48. 48.

    Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Catal Lett 110:15–21

    CAS  Google Scholar 

  49. 49.

    Ramasubramanian V, Ramsurn H, Price GL, J. Energy Chem. (2018)

  50. 50.

    Price GL, Kanazirev V (1997) Zeolites 18:33–37

    CAS  Google Scholar 

  51. 51.

    Kanazirev VI, Price GL, Dooley KM (1994) J Catal 148:164–180

    CAS  Google Scholar 

  52. 52.

    Kanazirev V, Dooley KM, Price GL (1994) J Catal 146:228–236

    CAS  Google Scholar 

  53. 53.

    Lee JS, Lee KH, Lee JY (1992) J Phys Chem 96:362–366

    CAS  Google Scholar 

  54. 54.

    Scurrell M (1987) Appl Catal 32:1–22

    CAS  Google Scholar 

  55. 55.

    Scurrell M (1988) Appl Catal 41:89–98

    CAS  Google Scholar 

  56. 56.

    Oshikawa K, Nagai M, Omi S (2001) J Phys Chem B 105:9124–9131

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the University of Tulsa (Faculty Development Summer Fellowship) and ACS-PRF (PRF# 56052-DNI9) are gratefully acknowledged. We thank Dr. Winton Cornell, Applied Associate Professor, The University of Tulsa, for the XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hema Ramsurn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramasubramanian, V., Lienhard, D.J., Ramsurn, H. et al. Effect of Addition of K, Rh and Fe Over Mo/HZSM-5 on Methane Dehydroaromatization Under Non-oxidative Conditions. Catal Lett 149, 950–964 (2019). https://doi.org/10.1007/s10562-019-02697-8

Download citation

Keywords

  • Methane dehydroaromatization
  • Promoters
  • K-Mo/HZSM-5
  • H2 pretreatment
  • β−Mo2C