Catalysis Letters

, Volume 149, Issue 4, pp 1087–1099 | Cite as

Comparative Study on Removal of NOx and Soot with A-site Substituted La2NiO4 Perovskite-like by Different Valence Cation

  • Lei Mao
  • Yongyi Yan
  • Xuteng Zhao
  • Maochen Fu
  • Youhong Xiao
  • Guojun DongEmail author


La1.8M0.2NiO4 (M = Na+, Sr2+, Ce3+) perovskite-like catalysts were prepared by citric acid complexation method. XRD, BET, FT-IR, SEM, XPS, H2-TPR, O2-TPD, MS-Soot-TPR, MS-NO-TPD and catalytic activity measurements were carried out to investigate the effect of A-site substitution on structure and catalytic performance for simultaneous removal soot and NOx. The characterization results show that La1.8M0.2NiO4 catalyst has high concentration of oxygen vacancies, more surface active oxygen, more trivalent nickel ions and better reducibility, which determines its better catalytic performance. The introduction of low valence cations at the A site significantly reduces the characteristic combustion temperature of soot and effectively promotes the reduction of NOx by soot. La1.8Sr0.2NiO4 catalyst exhibited the best soot removal performance with Ti 331 °C and Tm 473 °C, while La1.8Na0.2NiO4 catalyst showed the highest NOx conversion of 90%. Based on in situ DRIFTS and other characterization results, a possible mechanism for simultaneous removal of NOx and soot was proposed.

Graphical Abstract


Soot-NOx Simultaneous removal Perovskite-like oxides A-site substitution 



This work was supported by Advanced Technique Project Funds of the Manufacture and Information Ministry, Heilongjiang Province Science Foundation Project Plan (Grant No. E2017027), the Fundamental Research Funds for the Central Universities of Harbin Engineering University (Grant No. HEUCFP201807) and the National Key Research and Development Program of China(Grant No. 2016YFC0205200). And we thank Zhijuan Zhao and Xiaoyu Zhang from Analysis and Test Center of Chinese Sciences Academy Institute of Chemistry for their help in XPS.

Compliance with Ethical Standards

Conflict of interest

We declare that no conflict of interest exists.


  1. 1.
    Veidal S, Jeppegaard M, Sverrild A et al (2017) The impact of dysfunctional breathing on the assessment of asthma control. Respir Med 123:42–47CrossRefGoogle Scholar
  2. 2.
    Geng P, Mao H, Zhang Y et al (2017) Combustion characteristics and NOx emissions of a waste cooking oil biodiesel blend in a marine auxiliary diesel engine. Appl Therm Eng 115:947–954CrossRefGoogle Scholar
  3. 3.
    Borghesi G, Krisman A, Lu T et al (2018) Direct numerical simulation of a temporally evolving air/n-dodecane jet at low-temperature diesel-relevant conditions. Combust Flame 000:1–20Google Scholar
  4. 4.
    Dhal GC, Dey S, Mohan D et al (2018) Simultaneous abatement of diesel soot and NOx emissions by effective catalysts at low temperature: an overview. Catal Rev 60:437–496CrossRefGoogle Scholar
  5. 5.
    Rodríguez-Fernández J, Tsolakis A, Cracknell RF et al (2009) Combining GTL fuel reformed EGR and HC-SCR aftertreatment system to reduce diesel NOx emissions. A statistical approach. Int J Hydrogen Energy 34:2789–2799CrossRefGoogle Scholar
  6. 6.
    Yoshida S, Endo M, Sawano T et al (1989) Chemical oxygen iodine laser of extremely high efficiency. J Appl Phys 65:870–872CrossRefGoogle Scholar
  7. 7.
    Setten BALV, Makkee M, Moulijn J (2001) Science and technology of catalytic diesel particulate filters. Catal Rev 43:489–564CrossRefGoogle Scholar
  8. 8.
    Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38:1079–1118CrossRefGoogle Scholar
  9. 9.
    Mishra A, Prasad R (2014) Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal Rev 56:57–81CrossRefGoogle Scholar
  10. 10.
    Fino D, Fino P, Saracco G et al (2003) Studies on kinetics and reactions mechanism of La2−xKxCu1−yVyO4 layered perovskites for the combined removal of diesel particulate and NOx. Appl Catal B Environ 43:243–259CrossRefGoogle Scholar
  11. 11.
    Li Z, Ming M, Zha Y et al (2012) Highly efficient multifunctional dually-substituted perovskite catalysts La1−xKxCo1−yCuyO3−δ used for soot combustion, NOx storage and simultaneous NOx-soot removal. Appl Catal B Environ 121–122:65–74CrossRefGoogle Scholar
  12. 12.
    Borovskikh L, Mazo G, Kemnitz E (2003) Reactivity of oxygen of complex cobaltates La1−xSrxCoO3−δ, and LaSrCoO4. Solid State Sci 5:409–417CrossRefGoogle Scholar
  13. 13.
    Cheng Z, Liu X, Lu J et al (2009) Deep desulfurization of FCC gasoline by selective adsorption over nanosized zeolite-based adsorbents. React Kinet Catal Lett 97:1–6CrossRefGoogle Scholar
  14. 14.
    Gao Z, Wang R (2010) Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method. Appl Catal B Environ 98:147–153CrossRefGoogle Scholar
  15. 15.
    Martinez-Ortega F, Batiot-Dupeyrat C, Valderrama G et al (2001) Methane catalytic combustion on La-based perovskite catalysts. Cr Acad Bulg Sci 4:49–55Google Scholar
  16. 16.
    Yuan L, Zheng H, Liu J et al (2002) Preparation of high surface area La1−xAxMnO3 (A = Ba, Sr or Ca) ultra-fine particles used for CH4 oxidation. Chem Eng J 89:213–221CrossRefGoogle Scholar
  17. 17.
    Russo N, Fino D, Saracco G et al (2005) Studies on the redox properties of chromite perovskite catalysts for soot combustion. J Catal 229:459–469CrossRefGoogle Scholar
  18. 18.
    Li Z, Meng M, Li Q et al (2010) Fe-substituted nanometric La0.9K0.1Co1−xFexO3−δ perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx. Chem Eng J 164:98–105CrossRefGoogle Scholar
  19. 19.
    Imanaka N, Masui T (2012) Advances in direct NOx decomposition catalysts. Appl Catal A 431–432:1–8CrossRefGoogle Scholar
  20. 20.
    Zhu Y, Wang D, Yuan F et al (2008) Direct NO decomposition over La2−xBaxNiO4 catalysts containing BaCO3 phase. Appl Catal B Environ 82(3):255–263CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Li L, Jiang B et al (2017) Hydrogen by chemical looping reforming of ethanol: the effect of promoters on La2−xMxNiO4−λ (M = Ca, Sr and Ce) oxygen carriers. Chem Eng Sci 174:259–267CrossRefGoogle Scholar
  22. 22.
    Zhu J, Xiao D, Jing L et al (2005) Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1−xCexSrNiO4 (0 ≤ x ≤ 0.3). J Mol Catal A-Chem 234:99–105CrossRefGoogle Scholar
  23. 23.
    Zhao B, Wang R, Yang X (2009) Simultaneous catalytic removal of NOx and diesel soot particulates over La1−xCexNiO3 perovskite oxide catalysts. Catal Commun 10:1029–1033CrossRefGoogle Scholar
  24. 24.
    Peng X, Lin H, Shangguan W et al (2006) Physicochemical and catalytic properties of La0.8K0.2CuxMn1–xO3 for simultaneous removal of NOx and soot: effect of Cu substitution amount and calcination temperature. Ind Eng Chem Res 45:8822–8828CrossRefGoogle Scholar
  25. 25.
    Zhang H, Jin J, Yu GY ea tl (2000) Nonstoichiometry and Oxygen Permeability in La2NiO4+δ. Chinese J Inorg Chem 16:911–915Google Scholar
  26. 26.
    Aramburu JA, Garcíafernández P, Lastra JMG et al (2017) John–Teller and Non-John–Teller systems involving CuF6 4-units: role of the internal electric field in Ba2ZnF6:Cu2+ and other insulating systems. J Phys Chem C 121:5215–5224CrossRefGoogle Scholar
  27. 27.
    Jian L, Zhen Z, Peng L et al (2008) Study on the Reaction mechanism for soot oxidation over TiO2 or ZrO2-supported vanadium oxide catalysts by means of in-situ UV-Raman. Catal Lett 120:148–153CrossRefGoogle Scholar
  28. 28.
    Gallego GS, Mondragón F, Barrault J et al (2006) CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Cataly A 311:164–171CrossRefGoogle Scholar
  29. 29.
    Lima SM, Assaf JM, Peña MA et al (2006) Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane. Appl Catal A 311:94–104CrossRefGoogle Scholar
  30. 30.
    Ma Z, Gao X, Yuan X et al (2011) Simultaneous catalytic removal of NOx and diesel soot particulates over La2−xAxNi1−yByO4 perovskite-type oxides. Catal Commun 12:817–821CrossRefGoogle Scholar
  31. 31.
    Sui C, Yuan F, Zhang Z et al (2017) Catalytic activity of Ru/La1.6Ba0.4NiO4 perovskite-like catalyst for NO + CO reaction: interaction between Ru and La1.6Ba0.4NiO4. Mol Catal 437:37–46CrossRefGoogle Scholar
  32. 32.
    Roberts MW (1990) ChemInform abstract: chemisorption and reaction pathways at metal surfaces: the role of surface oxygen. Cheminform 21:451–475Google Scholar
  33. 33.
    Zhao Z, Yang XG, W Y (1996) Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Appl Catal B Environ 8:281–297CrossRefGoogle Scholar
  34. 34.
    Ma R, Islam MJ, Reddy DA et al (2016) Transformation of CeO2 into a mixed phase CeO2/Ce2O3 nanohybrid by liquid phase pulsed laser ablation for enhanced photocatalytic activity through Z-scheme pattern. Ceram Int 42:18495–18502CrossRefGoogle Scholar
  35. 35.
    Sheerin E, Reddy GK, Smirniotis P (2016) Evaluation of Rh/CexTi1−xO2 catalysts for synthesis of oxygenates from syngas using XPS and TPR techniques. Catal Today 263:75–83CrossRefGoogle Scholar
  36. 36.
    Nakamura K, Ogawa K (2002) Excess oxygen in LaMnO3+δ. J Solid State Chem 163:65–76CrossRefGoogle Scholar
  37. 37.
    Zhu J, Zhao Z, Xiao D et al (2005) Study of La2 – xSrxCuO4 (x = 0.0, 0.5, 1.0) catalysts for NO + CO reaction from the measurements of O2-TPD, H2-TPR and cyclic voltammetry. Mol Catal 238:35–40CrossRefGoogle Scholar
  38. 38.
    Liu J, Zhao Z, Xu CM et al (2008) Simultaneous removal of NOx and diesel soot over nanometer Ln–Na–Cu–O perovskite-like complex oxide catalysts. Appl Catal B Environ 78:61–72CrossRefGoogle Scholar
  39. 39.
    Lima SMD, Silva AMD, Costa LOOD et al (2012) Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl Catal B Environ 121–122:1–9CrossRefGoogle Scholar
  40. 40.
    Liu C, Zhen Z, Yang X et al (1996) Superconductor mixed oxides La2−xSrxCuO4±λ for catalytic hydroxylation of phenol in the liquid–solid phase. Chem Commun 9:1019–1020CrossRefGoogle Scholar
  41. 41.
    Ivanov DV, Sadovskaya EM, Pinaeva LG et al (2009) Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition. J Catal 267:5–13CrossRefGoogle Scholar
  42. 42.
    Wu Y, Yu T, Dou BS et al (1989) A comparative study on perovskite-type mixed oxide catalysts A′xA1−xBO3−λ (A′ = Ca, Sr, A = La, B = Mn, Fe, Co) for NH3 oxidation. J Catal 120:88–107CrossRefGoogle Scholar
  43. 43.
    Shin S, Arakawa H, Hatakeyama Y et al (1979) Absorption of NO in the lattice of an oxygen-deficient perovskite SrFeO3−x and the infrared spectroscopic study of the system NO-SrFeO3−x. Mater Res Bull 14:633–639CrossRefGoogle Scholar
  44. 44.
    Zhao Z, Yang XG, Wang XZ et al (1996) Studies on the adsorption property of NO on the Ni-based mixed oxide catalysts with perovskite-like(ABO3 and A2BO4) structure. Chem J Chin U 17:790–793Google Scholar
  45. 45.
    Hadjiivanov K (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev 42:71–144CrossRefGoogle Scholar
  46. 46.
    Liu S, Wu X, Weng D et al (2013) Sulfation of Pt/Al2O3 catalyst for soot oxidation: high utilization of NO2 and oxidation of surface oxygenated complexes. Appl Catal B Environ 138:199–211CrossRefGoogle Scholar
  47. 47.
    Liu J, Zhao Z, Xu C et al (2008) The structures, Adsorption characteristics of La–Rb–Cu–O perovskite-like complex oxides, and their catalytic performances for the simultaneous removal of nitrogen oxides and diesel soot. J Phys Chem C 112:5930–5941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lei Mao
    • 1
  • Yongyi Yan
    • 1
  • Xuteng Zhao
    • 1
  • Maochen Fu
    • 1
  • Youhong Xiao
    • 2
  • Guojun Dong
    • 1
    Email author
  1. 1.Key Laboratory of Superlight Materials and Surface Technology of Education Ministry, College of MaterialsScience and Chemical Engineering of Harbin Engineering UniversityHarbinChina
  2. 2.College of Power and Energy Engineering of Harbin Engineering UniversityHarbinChina

Personalised recommendations