Catalysis Letters

, Volume 149, Issue 3, pp 798–812 | Cite as

Degradation of Polypropylene and Polyethylene Wastes Over HZSM-5 and USY Zeolites

  • Bianca P. S. Santos
  • Débora D. Almeida
  • Maria de Fátima V. MarquesEmail author
  • Cristiane A. Henriques


This work provides evidence that ultra-stable Y zeolite (USY) and HZSM-5 zeolites were active as catalysts for the pyrolysis of urban plastic wastes, decreasing its degradation temperature. When HZSM-5 was used as the catalyst, at 450 °C and 30 min, an increase in the solid fraction and a reduction in the liquid fraction were observed. On the other hand, the best catalytic cracking performance was observed for the reaction catalyzed by USY zeolite, and a higher amount of liquid fraction was obtained. Moreover, the increase of reaction time and temperature was favorable to obtain better results in thermal pyrolysis. As to the liquid fraction composition, its components were alkylbenzenes, olefins, and naphthalenes in the thermal pyrolysis whereas alkylbenzenes were the main component in the HZSM-5-catalysed pyrolysis and that catalyzed by USY provides higher amounts of olefins.

Graphical Abstract


HZSM-5 USY Pyrolysis Plastic waste Polyolefin 



This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) and by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they no conflict of interest.


  1. 1.
    Demirbas A (2004) Pyrolysis of municipal of plastic wastes for recovery of gasoline-range hydrocarbons. J Anal Appl Pyrolysis 72:97–102CrossRefGoogle Scholar
  2. 2.
    Spinacé MAS, Paoli MAA (2005) Tecnologia da reciclagem de polímeros. Quím Nova 98:65–72CrossRefGoogle Scholar
  3. 3.
    Singhabhandhu A, Tezuka T (2010) The waste-to-energy framework for integrated multi-waste utilization: waste cooking oil, waste lubricating oil, and waste plastics. Energy 35:2544–2551CrossRefGoogle Scholar
  4. 4.
    Abbas-Abadi MS, Haghighi MN, Yeganeh H (2012) The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J Anal Appl Pyrolysis 95:198–204CrossRefGoogle Scholar
  5. 5.
    Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M (2017) Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew Sustain Energy Rev 73:346–368. CrossRefGoogle Scholar
  6. 6.
    López A, Marco IB, Caballero M, Adrados A, Laresgoiti MF (2011) Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste Manage 31:1852–1858CrossRefGoogle Scholar
  7. 7.
    Lin YH, Yang MH (2008) Tertiary recycling of polyethylene waste by fluidized-bed reactions in the presence of various cracking catalysts. J Anal Appl Pyrolysis 83:101–109CrossRefGoogle Scholar
  8. 8.
    Huang WC, Huang MS, Huang CF, Chen CC, Liang K (2010) Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel 89:2305–2316CrossRefGoogle Scholar
  9. 9.
    Lin YH, Yang MH (2005) Catalytic reactions of post-consumer polymer waste over fluidized cracking catalysts for producing hydrocarbons. J Mol Catal A Chem 231:113–122CrossRefGoogle Scholar
  10. 10.
    Panda AK, Singh RK, Mishra DK (2010) Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sust Energ Rev 14:233–248CrossRefGoogle Scholar
  11. 11.
    Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F (2012) The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A 413–414:183–191CrossRefGoogle Scholar
  12. 12.
    Aguado J, Serrano DP, Miguel G, Escola JM, Rodríguez JM (2007) Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. J Anal Appl Pyrolysis 78:153–161CrossRefGoogle Scholar
  13. 13.
    Achilias DS, Roupakia SC, Megalokonomo SP, Lappas AA, Antonakou EV (2007) Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J Hazard Mater 149(3):536–542CrossRefGoogle Scholar
  14. 14.
    Marcilla A, Beltránm I, Navarro R (2009) Thermal and catalytic pyrolysis of polyethylene over HZSM-55 and HUSY zeolites in a batch reactor under dynamic conditions. Appl Catal B 86:78–86CrossRefGoogle Scholar
  15. 15.
    Artetxe M, Lopez G, Amutio M, Elordi G, Bilbao J, Olazar M (2013) Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity. Ind Eng Chem Res 52:10637–10645CrossRefGoogle Scholar
  16. 16.
    Lin YH, Yang MH, Yeh TF, Ger MD (2004) Catalytic degradation of high density polyethylene over mesoporous and microporous catalysts in a fluidised-bed reactor. Polym Degrad Stabil 86:121–128CrossRefGoogle Scholar
  17. 17.
    Huang WC, Huang MS, Huang CF, Chen CC, Ou KL (2010) Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel 89:2305–2316CrossRefGoogle Scholar
  18. 18.
    López A, Marco I, Caballero BM, Laresgoiti MF, Adrados A, Aranzabal A (2011) Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl Catal B 104:211–219CrossRefGoogle Scholar
  19. 19.
    Li K, Lees W, Yuan G, Lei J, Lin S, Weerachanchai P, Yang Y, Wang Y (2016) Investigation into the catalytic activity of microporous and mesoporous catalysts in the pyrolysis of waste polyethylene and polypropylene mixture. Energies 9:1–15Google Scholar
  20. 20.
    Santos BPS, Almeida D, Marques MFV, Henriques CA (2018) Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 215:515–521CrossRefGoogle Scholar
  21. 21.
    Veiga PM, Gomes ACL, Veloso CO, Henriques CA (2017) Acid zeolites for glycerol etherification with ethyl alcohol: catalytic activity and catalyst properties. Appl Catal A 548:1–14CrossRefGoogle Scholar
  22. 22.
    Thommes M, Kaneko K, Neimark AV, Oliver JP, REinoso FR, Roquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069Google Scholar
  23. 23.
    Sousa ZSB, Cesar DV, Henriques CA, Silva VT (2014) Bioethanol conversion into hydrocarbons on HZSM-5 and HMCM-22 zeolites: use of in situ DRIFTS to elucidate the role of the acidity and of the pore structure over the coke formation and product distribution. Catal Today 234:182–191CrossRefGoogle Scholar
  24. 24.
    Rac V, Rakić V, Stošić D, Otman O, Auroux A (2014) Hierarchical ZSM-5, Beta and USY zeolites: acidity assessment by gas and aqueous phase calorimetry and catalytic activity in fructose dehydration reaction. Microporous Mesoporous Mater 194:126–134CrossRefGoogle Scholar
  25. 25.
    Triantafillidis CS, Vlessidis AG, Evmiridis NP (2000) Dealuminated H–Y Zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H–Y. Zeolites Ind Eng Chem Res 39:307–319CrossRefGoogle Scholar
  26. 26.
    Katada N, Kageyama Y, Takahara K, Kanai T, Begum HA, Niwa M (2004) Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt. J Mol Catal A 211:119–130CrossRefGoogle Scholar
  27. 27.
    Silvério FO, Barbosa LCA, Veloso DP (2008) A pirólise como técnica analítica. Quím Nova 31:1–20CrossRefGoogle Scholar
  28. 28.
    Miskolczi N, Nagy R (2012) Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Process Technol 104:96–104CrossRefGoogle Scholar
  29. 29.
    Mastral JF, Berrueco C, Gea M, Ceamanos J (2006) Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite. Polym Degrad Stabil 91:3330–3338CrossRefGoogle Scholar
  30. 30.
    Seo YH, Lee KH, Shin DH (2003) Investigation of catalytic degradation of high-density polyethylene by hydrocarbons group type analysis. J Anal Appl Pyrolysis 70:383–398CrossRefGoogle Scholar
  31. 31.
    Zhang X, Lei H, Yadavalli G, Zhu L, Wei Y, Liu Y (2015) Gasoline-range hydrocarbons produced from microwave-induced pyrolysis of low-density polyethylene over ZSM-5. Fuel 144:33–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Macromoléculas Eloisa ManoIMA–UFRJ, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations