Photo-Induced Phase Transition of CdZnS Based Nanocomposite at Room Temperature Under Solar Irradiation

Abstract

Photo-induced phase transition (PIPT) of CdZnS based nanocomposites that was performed at the room temperature under the solar light illumination is reported here for the first time. CdZnS particles were decorated on reduced graphene oxide (RGO) with a solvothermal process and consequently RGO-CdZnS-5%Pt nanocomposites (PC) have been synthesized as zinc blende (cubic) phase of CdZnS. Zinc blende structure (cubic) of CdZnS components of PC was turned to wurtzite (hexagonal) crystal structure with PIPT during the photocatalytic hydrogen evolution reaction. The band gap of the photocatalyst decreased from 2.42 to 2.19 eV and the hydrogen evolution rate increased from 37.3 to 184.0 µ mol h−1 due to the PIPT process.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Agopcan B, Akyüz D, Karaca F et al (2018) A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43:8206–8220

    Article  CAS  Google Scholar 

  2. 2.

    Akyüz D, Koca A (2018) Photocatalytic hydrogen production with reduced graphene oxide (RGO)-CdZnS nano-composites synthesized by solvothermal decomposition of dimethyl sulfoxide as the sulfur source. J Photochem Photobiol A 364:625–634

    Article  CAS  Google Scholar 

  3. 3.

    Ben-Shahar Y, Scotognella F, Kriegel I et al (2016) Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat Commun 7:ncomms10413

    Article  CAS  Google Scholar 

  4. 4.

    Biswas S, Kar S, Santra S et al (2009) Solvothermal synthesis of high-aspect ratio alloy semiconductor nanowires: Cd1–x ZnxS, a case study. J Phys Chem C 113:3617–3624

    Article  CAS  Google Scholar 

  5. 5.

    Ca N, Bau N, Phan T et al (2017) Temperature-dependent photoluminescent and Raman studies on type-II CdS/ZnSe core/shell and CdS/CdZnS-ZnCdSe/ZnSe core/intermediate/shell nanoparticles. J Alloys Compd 697:401–408

    Article  CAS  Google Scholar 

  6. 6.

    Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Progr Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  7. 7.

    Chen F, Zhou R, Yang L et al (2008) One-step fabrication of CdS nanorod arrays via solution chemistry. J Phys Chem C 112:13457–13462

    Article  CAS  Google Scholar 

  8. 8.

    Chica B, Wu CH, Liu Y et al (2017) Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod-NiFe hydrogenase assemblies. Energy Environ Sci 10:2245–2255

    Article  CAS  Google Scholar 

  9. 9.

    Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2:284–297

    Article  CAS  Google Scholar 

  10. 10.

    Devi LG, Kavitha R (2016) A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622

    Article  CAS  Google Scholar 

  11. 11.

    Dzhagan VM, Stroyuk OL, Rayevska OE et al (2010) A spectroscopic and photochemical study of Ag+-, Cu2+-, Hg2+-, and Bi3+-doped CdxZn1–xS nanoparticles. J Colloid Interface Sci 345:515–523

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Gouadec G, Colomban P (2007) Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progr Cryst Growth Character Mater 53:1–56

    Article  CAS  Google Scholar 

  13. 13.

    Guo S, Deng Z, Li M et al (2016) Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew Chem Int Ed 55:1830–1834

    Article  CAS  Google Scholar 

  14. 14.

    Head DL, Mccarty CG (1973) The thermal decomposition of DMSO. Tetrahedron Lett 14:1405–1408

    Article  Google Scholar 

  15. 15.

    Hu Y, Gao X, Yu L et al (2013) Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew Chem 125:5746–5749

    Article  Google Scholar 

  16. 16.

    Kar S, Chaudhuri S (2006) Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. J Phys Chem B 110:4542–4547

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Kato A, Nishigaki M, Mamedov N et al (2003) Optical properties and photo-induced memory effect related with structural phase transition in TlGaS2. J Phys Chem Solids 64:1713–1716

    Article  CAS  Google Scholar 

  18. 18.

    Ke D, Liu S, Dai K et al (2009) CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J Phys Chem C 113:16021–16026

    Article  CAS  Google Scholar 

  19. 19.

    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Li F, Bi W, Kong T et al (2009) Effect of sulfur sources on the crystal structure, morphology and luminescence of CdS nanocrystals prepared by a solvothermal method. J Alloys Compd 479:707–710

    Article  CAS  Google Scholar 

  21. 21.

    Li Q, Meng H, Yu J et al (2014) Enhanced photocatalytic hydrogen-production performance of graphene–ZnxCd1–xS composites by using an organic S source. Chemistry A 20:1176–1185

    CAS  Google Scholar 

  22. 22.

    Lingampalli S, Gautam UK, Rao C (2013) Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Cd1–xZnxS and ZnO/Pt/CdS1–xSex hybrid nanostructures. Energy Environ Sci 6:3589–3594

    Article  CAS  Google Scholar 

  23. 23.

    Ran JR, Gao GP, Li FT et al (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Saha S, Sain S, Meikap A et al (2015) Microstructure characterization and electrical transport of nanocrystalline CdZnS quantum dots. Physica E 66:59–66

    Article  CAS  Google Scholar 

  25. 25.

    Sain S, Pradhan S (2011) Mechanochemical solid state synthesis of (Cd0. 8Zn0. 2) S quantum dots: microstructure and optical characterizations. J Alloys Compd 509:4176–4184

    Article  CAS  Google Scholar 

  26. 26.

    Shi J, Cui HN, Liang Z et al (2011) The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1–xS. Energy Environ Sci 4:466–470

    Article  CAS  Google Scholar 

  27. 27.

    Takanabe K, Domen K (2011) Toward visible light response: overall water splitting using heterogeneous photocatalysts. Green 1:313–322

    Article  CAS  Google Scholar 

  28. 28.

    Thakur S, Kshetri T, Kim NH et al (2017) Sunlight-driven sustainable production of hydrogen peroxide using a CdS–graphene hybrid photocatalyst. J Catal 345:78–86

    Article  CAS  Google Scholar 

  29. 29.

    Tian B, Tian BN, Smith B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 9:1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Vigil O, Riech I, Garcia-Rocha M et al (1997) Characterization of defect levels in chemically deposited CdS films in the cubic-to-hexagonal phase transition. J Vac Sci Technol A 15:2282–2286

    Article  CAS  Google Scholar 

  31. 31.

    Wang W, Germanenko I, El-Shall MS (2002) Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem Mater 14:3028–3033

    Article  CAS  Google Scholar 

  32. 32.

    Weng B, Liu S, Zhang N et al (2014) A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D–1D nanocomposite photocatalyst. J Catal 309:146–155

    Article  CAS  Google Scholar 

  33. 33.

    Won D-J, Wang C-H, Jang H-K et al (2001) Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties. Appl Phys A 73:595–600

    Article  CAS  Google Scholar 

  34. 34.

    Wu B, Cheng H, Guha S et al (1993) Molecular beam epitaxial growth of CdZnS using elemental sources. Appl Phys Lett 63:2935–2937

    Article  CAS  Google Scholar 

  35. 35.

    Wu JM, Liou LB (2011) Room temperature photo-induced phase transitions of VO2 nanodevices. J Mater Chem 21:5499–5504

    Article  CAS  Google Scholar 

  36. 36.

    Wu X, Zhang Z, Meng F et al (2014) Core–shell-like Y2O3:[(Tb3+–Yb3+), Li+]/CdZnS heterostructure synthesized by super-close-space sublimation for broadband down-conversion. Nanoscale 6:4745–4749

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Yuan X, Zhang W, Zhang P (2013) Hole-lattice coupling and photoinduced insulator-metal transition in VO2. Phys Rev B 88:035119

    Article  CAS  Google Scholar 

  38. 38.

    Zelaya-Angel O, Alvarado-Gil J, Lozada-Morales R et al (1994) Band-gap shift in CdS semiconductor by photoacoustic spectroscopy: evidence of a cubic to hexagonal lattice transition. Appl Phys Lett 64:291–293

    Article  CAS  Google Scholar 

  39. 39.

    Zhang J, Yu J, Jaroniec M et al (2012) Noble metal-free reduced graphene oxide-ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett 12:4584–4589

    Article  CAS  Google Scholar 

  40. 40.

    Zhang N, Yang M-Q, Tang Z-R et al (2013) CdS–graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation. J Catal 303:60–69

    Article  CAS  Google Scholar 

  41. 41.

    Zhang W, Gao W, Zhang X et al (2017) Surface spintronics enhanced photo-catalytic hydrogen evolution: mechanisms, strategies, challenges and future. Appl Surf Sci 434:643–668

    Google Scholar 

  42. 42.

    Ziabari AA, Ghodsi F (2013) Effects of the Cd: Zn: S molar ratio and heat treatment on the optical and photoluminescence properties of nanocrystalline CdZnS thin films. Mater Sci Semicond Process 16:1629–1636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Marmara University BAPKO (Project No. FEN-C-DRP-131217-0675) and The Scientific and Technological Research Council of Turkey, TUBITAK (Project No. 116M567).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atıf Koca.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akyüz, D., Koca, A. Photo-Induced Phase Transition of CdZnS Based Nanocomposite at Room Temperature Under Solar Irradiation. Catal Lett 149, 876–881 (2019). https://doi.org/10.1007/s10562-019-02661-6

Download citation

Keywords

  • Photo-induced phase transition
  • Metal chalcogenides
  • Hydrogen production
  • Photocatalyst