Advertisement

Catalysis Letters

, Volume 149, Issue 3, pp 688–698 | Cite as

Design of BNPs-TAPC Palladium Complex as a Reusable Heterogeneous Nanocatalyst for the O-Arylation of Phenols and N-Arylation of Amines

  • Kiumars BahramiEmail author
  • Minoo Khodamorady
Article
  • 83 Downloads

Abstract

The thermally stable new heterogenous nanocatalyst BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) was synthesized, characterized and successfully applied in carbon-heteroatom (C–O and C–N) coupling reactions of aryl halides with phenols and amines. The formation of resultant nanocatalyst was approved by FT-IR, XRD, TGA, XPS and EDX techniques. The morphology of BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) was characterized using scanning and transmission electron microscopes. The leaching of palladium from the surface of the catalyst was studid by ICP-OES technique. Noteworthy, the highly active BNPs@SiO2(CH2)3-TAPC-O-CH2CH2NH2-Pd(0) can be easily recycled and reused for six times with negligible loss in its activity. Some remarkable advantages of this method are the shorter reaction times, milder conditions, no needs for an inert atmosphere, high yields and easy separation.

Graphical Abstract

Keywords

Boehmite nanoparticles Cross coupling reactions Buchwald-Hartwig reactions Heterogeneous nanocatalyst 

Notes

Acknowledgements

The authors gratefully appreciated the financial support of this work by the research council of Razi University.

Supplementary material

10562_2018_2627_MOESM1_ESM.doc (484 kb)
Supplementary material 1 (DOC 483 KB)

References

  1. 1.
    Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111:1417–1492CrossRefGoogle Scholar
  2. 2.
    Molnar A (2011) Chem Rev 111:2251–2320CrossRefGoogle Scholar
  3. 3.
    Fortman GC, Nolan SP (2011) Chem Soc Rev 40:5151–5169CrossRefGoogle Scholar
  4. 4.
    Ghorbani-Vaghei R, Hemmati S, Hamelian M, Veisi H (2015) Appl Organomet Chem 29:195–199CrossRefGoogle Scholar
  5. 5.
    Veisi H, Poor Heravi MR, Hamelian M (2015) Appl Organomet Chem 29:334–337CrossRefGoogle Scholar
  6. 6.
    Arnt J, Skarsfeldt T (1998) Neuropsychopharmacology 18:63CrossRefGoogle Scholar
  7. 7.
    Boswell MG, Yeung FG, Wolf C (2012) Synlett 2012:1240–1244Google Scholar
  8. 8.
    Djakovitch L, Felpin FX (2014) ChemCatChem 6:2175–2187CrossRefGoogle Scholar
  9. 9.
    Yin L, Liebscher J (2007) Chem Rev 107:133–173CrossRefGoogle Scholar
  10. 10.
    Monnier F, Taillefer M (2009) Angew Chem Int Ed 48:6954–6971CrossRefGoogle Scholar
  11. 11.
    Fan QH, Li YM, Chan AS (2002) Chem Rev 102:3385–3466CrossRefGoogle Scholar
  12. 12.
    McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3300CrossRefGoogle Scholar
  13. 13.
    Mora M, Jimenez-Sanchidrian C, Rafael Ruiz J (2012) Curr Org Chem 16:1128–1150CrossRefGoogle Scholar
  14. 14.
    Choudhary H, Nishimura S, Ebitani K (2014) J Mater Chem A 2:18687–18696CrossRefGoogle Scholar
  15. 15.
    Lei Y, Wu L, Zhang X, Mei H, Gu Y, Li G (2015) J Mol Catal Chem 398:164–169CrossRefGoogle Scholar
  16. 16.
    Liu X, Zhao X, Lu M (2014) J Organomet Chem 768:23–27CrossRefGoogle Scholar
  17. 17.
    Soni SS, Kotadia DA (2014) Catal Sci Technol 4:510–515CrossRefGoogle Scholar
  18. 18.
    Veisi H, Hamelian M, Hemmati S, Dalvand A (2017) Tetrahedron Lett 58:4440–4446CrossRefGoogle Scholar
  19. 19.
    Garg B, Ling YC (2013) Green Mater 1:47–61CrossRefGoogle Scholar
  20. 20.
    Verma S, Verma D, Sinha AK, Jain SL (2015) Appl Catal A 489:17–23CrossRefGoogle Scholar
  21. 21.
    Yinghuai Z, Peng SC, Emi A, Zhenshun S, Kemp RA (2007) Adv Synth Catal 349:1917–1922CrossRefGoogle Scholar
  22. 22.
    Karimi B, Behzadnia H, Vali H (2014) ChemCatChem 6:745–748CrossRefGoogle Scholar
  23. 23.
    Navalon S, Alvaro M, Garcia H (2013) ChemCatChem 5:3460–3480CrossRefGoogle Scholar
  24. 24.
    Oliveira RL, He W, Gebbink RJK, de Jong KP (2015) Catal Sci Technol 5:1919–1928CrossRefGoogle Scholar
  25. 25.
    de Aguilar Cruz AM, Eon JG (1998) Appl Catal A 167:203–213CrossRefGoogle Scholar
  26. 26.
    Furuta S, Katsuki H, Takagi H (1994) J Mater Sci 13:1077–1080Google Scholar
  27. 27.
    Hwang KT, Lee HS, Lee SH, Chung KC, Park SS, Lee JH (2001) J Eur Ceram Soc 21:375–380CrossRefGoogle Scholar
  28. 28.
    Granados-Correa F, Corral-Capulin N, Olguín M, Acosta-León C (2011) Chem Eng J 171:1027–1034CrossRefGoogle Scholar
  29. 29.
    Webster TJ, Hellenmeyer EL, Price RL (2005) Biomaterials 26:953–960CrossRefGoogle Scholar
  30. 30.
    Hajjami M, Ghorbani-Choghamarani A, Ghafouri-Nejad R, Tahmasbi B (2016) New J Chem 40:3066–3074CrossRefGoogle Scholar
  31. 31.
    Kenny JR, Maggs JL, Meng X, Sinnott D, Clarke SE, Park BK, Stachulski AV (2004) J Med Chem 47:2816–2825CrossRefGoogle Scholar
  32. 32.
    Meher C, Rao A, Omar M (2013) Asian J Pharm Sci Res 3:43–60Google Scholar
  33. 33.
    Sadeghi S, Jafarzadeh M, Abbasi AR, Daasbjerg K (2017) New J Chem 41:12014–12027CrossRefGoogle Scholar
  34. 34.
    Zhang J, Zhang Z, Wang Y, Zheng X, Wang Z (2008) Eur J Org Chem 2008:5112–5116CrossRefGoogle Scholar
  35. 35.
    Lasri J, Mac Leod TC, Pombeiro AJ (2011) Appl Catal A 397:94–102CrossRefGoogle Scholar
  36. 36.
    Shen C, Xu J, Yu W, Zhang P (2014) Green Chem 16:3007–3012CrossRefGoogle Scholar
  37. 37.
    Keipour H, Hosseini A, Afsari A, Oladee R, Khalilzadeh MA, Ollevier T (2015) Can J Chem 94:95–104CrossRefGoogle Scholar
  38. 38.
    Wang D, Zheng Y, Yang M, Zhang F, Mao F, Yu J, Xia X (2017) Org Biomol Chem 15:8009–8012CrossRefGoogle Scholar
  39. 39.
    Hou H, Xie Y, Yang Q, Guo Q, Tan C (2005) Nanotechnology 16:741CrossRefGoogle Scholar
  40. 40.
    Bahrami K, Khodaei MM, Roostaei M (2014) New J Chem 38:5515–5520CrossRefGoogle Scholar
  41. 41.
    Jabbari A, Tahmasbi B, Nikooram M, Ghorbani-Choghamarani A (2018) Appl Organomet Chem 32:e4295CrossRefGoogle Scholar
  42. 42.
    Tahmasbi B, Ghorbani-Choghamarani A (2017) Appl Organomet Chem 31:e3644CrossRefGoogle Scholar
  43. 43.
    Bahrami K, Kamrani SN (2018) Appl Organomet Chem 32:e4102CrossRefGoogle Scholar
  44. 44.
    Elazab HA, Moussa Sh, Siamaki AR, Gupton FB, El-Shall SM (2017) Cattal Lett 147:1510–1522CrossRefGoogle Scholar
  45. 45.
    Benyahya S, Monnier F, Man MWC, Bied C, Quazzani F, Taillefer M (2009) Green Chem 11:1121–1123CrossRefGoogle Scholar
  46. 46.
    Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T (2009) J Org Chem 74:1971–1976CrossRefGoogle Scholar
  47. 47.
    Zhang H, Cai Q, Ma D (2005) J Org Chem 70:5164–5173CrossRefGoogle Scholar
  48. 48.
    Ghorbani-Choghamarani A, Nikpour F, Ghorbani F, Havasi F (2015) RSC Adv 5:33212–33220CrossRefGoogle Scholar
  49. 49.
    Lamm B (1965) Acta Chem Scand 19:2316–2322CrossRefGoogle Scholar
  50. 50.
    Singh C, Rathod J, Jha V, Panossian A, Kumar P, Leroux FR (2015) Eur J Org Chem 2015:6515–6525CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Nanoscience and Nanotechnology Research Center (NNRC)Razi UniversityKermanshahIran

Personalised recommendations