Catalysis Letters

, Volume 149, Issue 3, pp 851–859 | Cite as

Magnetic Anchored CoPt Bimetallic Nanoparticles as Selective Hydrogenation Catalyst for Cinnamaldehyde

  • Tao Yuan
  • Derong Liu
  • Yue Pan
  • Xiaoqin Pu
  • Yongde Xia
  • Jinbo Wang
  • Wei XiongEmail author


Selective hydrogenation reaction of cinnamaldehyde is crucial for its appliction in fine chemical industries. The traditional noble metal catalyst for this reaction is expensive and often involving tedious steps. In this work, the magnetic anchored CoPt/Fe3O4 catalyst is prepared by a simple wet-impregnation method and evaluted as catalyst for selective hydrogenation of cinnamaldehyde. Electrons transfer directly from Co to Pt NPs can enhance H2 dissociation capability in the Co NPs interface, thereby strengthen the overall catalytic performance. Under optimum conditions, the conversion of cinnamaldehyde is 95% with 84% selectivity of cinnamyl alcohol. Furthermore, the magnetic interaction between the outer Co NPs and the Fe3O4 support maintains the stability of cinnamyl alcohol selectivity after repeated tests.

Graphical Abstract


CoPt/Fe3O4 NPs Electron transfer Selective hydrogenation Magnetic separation 



The authors are grateful for the financial support from the Basic and Frontier Research Project of Chongqing in China (No. cstc2016jcyjA0139). Moreover, I very much appreciate my tutors for giving many precious suggestions about how to conduct experiments and write article.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2018_2619_MOESM1_ESM.docx (276 kb)
Supplementary material 1 (DOCX 275 KB)


  1. 1.
    Chen X, Zhu H, Song X, Du H, Wang T et al (2017) Ru–PPh3@porous organic polymer: efficient and stable catalyst for the trickle bed regioselective hydrogenation of cinnamaldehyde. React Kinet Mech Catal 120:637–649CrossRefGoogle Scholar
  2. 2.
    Gombos R, Joó F (2014) Selective hydrogenation of cinnamaldehyde and phospholipids in aqueous-organic biphasic systems with ruthenium(II) complex catalysts. Green Process Synth 3:127–132Google Scholar
  3. 3.
    Ali HA, Al-Noaimi MZ, Mahmoud SS (2015) Selective hydrogenation of cinnamaldehyde catalyzed by ruthenium(II) complexes based on azoimine ligands. Jordan J Chem 10:58–68CrossRefGoogle Scholar
  4. 4.
    Prokopchuk DE, Morris RH (2012) Inner-sphere activation, outer-sphere catalysis: theoretical study on the mechanism of transfer hydrogenation of ketones using iron(II) PNNP eneamido complexes. Organometallics 31:7375–7385CrossRefGoogle Scholar
  5. 5.
    Mager N, Libioulle P, Carlier S, Hermans S (2017) Water-soluble single source precursors for homo- and hetero-metallic nanoparticle catalysts supported on nanocarbons. Catal Today 301:153–163CrossRefGoogle Scholar
  6. 6.
    Dietrich C, Schild D, Wang W, Kübel C, Behrens S (2017) Bimetallic Pt/Sn-based nanoparticles in ionic liquids as nanocatalysts for the selective hydrogenation of cinnamaldehyde. Z Anorg Allg Chem 643:120–129CrossRefGoogle Scholar
  7. 7.
    Liu Z, Tan X, Li J, Lv C (2013) Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation. New J Chem 37:1350–1357CrossRefGoogle Scholar
  8. 8.
    Zheng Q, Wang D, Yuan F, Han Q, Dong Y et al (2016) An effective co-promoted platinum of Co–Pt/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Catal Lett 146:1535–1543CrossRefGoogle Scholar
  9. 9.
    Hu Q, Wang S, Gao Z, Li Y, Zhang Q et al (2017) The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Appl Catal B 218:591–599CrossRefGoogle Scholar
  10. 10.
    He S, Xie L, Che M, Chan HC, Yang L et al (2016) Chemoselective hydrogenation of α,β-unsaturated aldehydes on hydrogenated MoOx nanorods supported iridium nanoparticles. J Mol Catal A 425:248–254CrossRefGoogle Scholar
  11. 11.
    Bhogeswararao S, Srinivas D (2012) Intramolecular selective hydrogenation of cinnamaldehyde over CeO2–ZrO2-supported Pt catalysts. J Catal 285:31–40CrossRefGoogle Scholar
  12. 12.
    Tamura M, Tokonami K, Nakagawa Y, Tomishige K (2017) Effective NbOx-modified Ir/SiO2 catalyst for selective gas-phase hydrogenation of crotonaldehyde to crotyl alcohol. ACS Catal 5:3685–3697Google Scholar
  13. 13.
    Ji XW, Niu XY, Li B, Han Q, Yuan FL et al (2014) Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts. ChemCatChem 6:3246–3253CrossRefGoogle Scholar
  14. 14.
    Ni X, Zhang B, Li C, Pang M, Su D et al (2012) Microwave-assisted green synthesis of uniform Ru nanoparticles supported on non-functional carbon nanotubes for cinnamaldehyde hydrogenation. Catal Commun 24:65–69CrossRefGoogle Scholar
  15. 15.
    Yao R, Li J, Wu P, Li X (2016) The superior performance of a Pt catalyst supported on nanoporous SiC–C composites for liquid-phase selective hydrogenation of cinnamaldehyde. RSC Adv 6:81211–81218CrossRefGoogle Scholar
  16. 16.
    Bhanja P, Liu X, Modak A (2017) Pt and Pd nanoparticles immobilized on amine-functionalized hypercrosslinked porous polymer nanotubes as selective hydrogenation catalyst for α, β-unsaturated aldehydes. ChemistrySelect 2:7535–7543CrossRefGoogle Scholar
  17. 17.
    Wang D, Zhu Y, Tian C, Wang L, Zhou W et al (2016) Synergistic effect of Mo2N and Pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo2N/SBA-15. Catal Sci Technol 6:2403–2412CrossRefGoogle Scholar
  18. 18.
    Chen L, Zhan W, Fang H, Cao Z, Yuan C et al (2017) Selective catalytic performances of noble metal nanoparticle@MOF composites: the concomitant effect of aperture size and structural flexibility of MOF matrices. Chem Eur J 23:11397–11403CrossRefGoogle Scholar
  19. 19.
    Li H, Pan Q, Ma Y, Guan X, Xue M et al (2016) Three-dimensional covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J Am Chem Soc 138:14783–14788CrossRefGoogle Scholar
  20. 20.
    Luz I, Rösler C, Epp K, Llabrés i Xamena FX (2015) Pd@UiO-66-type MOFs prepared by chemical vapor infiltration as shape-selective hydrogenation catalysts. Eur Inorg Chem 2015:3904–3912CrossRefGoogle Scholar
  21. 21.
    Zhang N, Shao Q, Wang P, Zhu X, Huang X (2018) Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation. Small 14:1704318CrossRefGoogle Scholar
  22. 22.
    Guo Z, Xiao C, Maligalganesh RV, Zhou L, Tian WG et al (2014) Pt nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal 4:1340–1348CrossRefGoogle Scholar
  23. 23.
    Zhao M, Yuan K, Wang Y, Li G, Guo J et al (2016) Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539:76–80CrossRefGoogle Scholar
  24. 24.
    Yuan K, Song T, Wang D, Zhang X, Gao X et al (2018) Effective and selective catalysts for cinnamaldehyde hydrogenation: hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew Chem Int Ed 57:5708–5713CrossRefGoogle Scholar
  25. 25.
    Masazumi T, Dai Y, Teruhisa O, Yoshinao N, Keiichi T (2017) In-situ formed Fe cation-modified Ir/MgO catalyst for selective hydrogenation of unsaturated carbonyl compounds. ACS Catal 7:5103–5111CrossRefGoogle Scholar
  26. 26.
    Song S, Liu X, Li J, Pan J, Wang F et al (2017) Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Adv Mater 29:1700495CrossRefGoogle Scholar
  27. 27.
    Chen H, Cullen DA, Larese JZ (2015) Highly efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over gold supported on zinc oxide materials. J Phys Chem C 119:28885–28894CrossRefGoogle Scholar
  28. 28.
    Zhang B, Zhang XB, Xu LY, Zhang YJ, Qin YH et al (2013) Selective hydrogenation of cinnamaldehyde over ZSM-5 supported Co catalysts. React Kinet Mech Catal 110:207–214CrossRefGoogle Scholar
  29. 29.
    Joseph Antony Raj K, Prakash MG, Elangovan T, Viswanathan B (2011) Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania. Catal Lett 142:87–94CrossRefGoogle Scholar
  30. 30.
    Liu X, Cheng S, Long J, Zhang W, Liu X et al (2017) MOFs-derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α,β-unsaturated aldehydes without use of base additives. Mater Chem Front 1:2005–2012CrossRefGoogle Scholar
  31. 31.
    Jiang P, Gao W, Wang X, Tang Y, Lan K, Wang B et al (2017) Highly selective hydrogenation of α, β-unsaturated carbonyl compounds over supported Co nanoparticles. Catal Commun 111:6–9CrossRefGoogle Scholar
  32. 32.
    Kalyon N, Hofmann K, Malter J, Lucas M, Claus P et al (2017) Catalytic activity of nanoscale borides: Co2B and Ni7B3 in the liquid-phase hydrogenation of citral. J Catal 352:436–441CrossRefGoogle Scholar
  33. 33.
    Mo M, Zheng M, Tang J, Lu Q, Xun Y (2013) Highly active Co–B, Co–Mo(W)–B amorphous nanotube catalysts for the selective hydrogenation of cinnamaldehyde. J Mater Sci 49:877–885CrossRefGoogle Scholar
  34. 34.
    Pan H, Li J, Lu J, Wang G, Xie W et al (2017) Selective hydrogenation of cinnamaldehyde with PtFex/Al2O3@SBA-15 catalyst: enhancement in activity and selectivity to unsaturated alcohol by Pt-FeOx and Pt-Al2O3@SBA-15 interaction. J Catal 354:24–36CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Chen C, Gong W, Song J (2017) Chemoselective transfer hydrogenation of cinnamaldehyde over activated charcoal supported Pt/Fe3O4 catalyst. Chin J Chem Phys 30:467–473CrossRefGoogle Scholar
  36. 36.
    Liu Y, Fang Z, Kuai L, Geng B (2014) One-pot facile synthesis of reusable tremella-like M1@M2@M1(OH)2 (M1 = Co, Ni, M2 = Pt/Pd, Pt, Pd and Au) three layers core-shell nanostructures as highly efficient catalysts. Nanoscale 6:9791–9797CrossRefGoogle Scholar
  37. 37.
    Guo M, Balamurugan J, Li X, Kim NH, Lee JH (2017) Hierarchical 3D cobalt-doped Fe3O4 nanospheres@NG hybrid as an advanced anode material for high-performance asymmetric supercapacitors. Small 13:1701275CrossRefGoogle Scholar
  38. 38.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  39. 39.
    Gu Y, Zhao Y, Wu P, Yang B, Yang N, Zhu Y (2016) Bimetallic PtxCoy nanoparticles with curved faces for highly efficient hydrogenation of cinnamaldehyde. Nanoscale 8:10896–10901CrossRefGoogle Scholar
  40. 40.
    Wang X, He Y, Liu Y, Park J, Liang X. Atomic layer deposited Pt-Co bimetallic catalysts for selective hydrogenation of α, β-unsaturated aldehydes to unsaturated alcohols. J Catal 366:61–69Google Scholar
  41. 41.
    Tu J, Ding M, Wang T, Ma L, Xu Y, Kang S, Zhang G (2017) Direct conversion of bio-syngas to gasoline fuels over a Fe3O4@C fischer-tropsch synthesis catalyst. Energy Procedia 105:82–87CrossRefGoogle Scholar
  42. 42.
    Silva D, Luza L, Gual A, Baptista D et al (2014) Straightforward synthesis of bimetallic Co/Pt nanoparticles in ionic liquid: atomic rearrangement driven by reduction-sulfidation processes and Fischer-Tropsch catalysis. Nanoscale 6:9085–9092CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tao Yuan
    • 1
  • Derong Liu
    • 1
  • Yue Pan
    • 1
  • Xiaoqin Pu
    • 1
  • Yongde Xia
    • 2
  • Jinbo Wang
    • 1
  • Wei Xiong
    • 1
    Email author
  1. 1.Institute of Chemistry and Chemical EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations