Catalysis Letters

, Volume 149, Issue 3, pp 840–850 | Cite as

Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts

  • Lulu Zhang
  • Ruikai Wang
  • Liang SongEmail author
  • Xueyuan Zhao
  • Qiming Fan
  • Hong Li
  • Qing Yu
  • Xuebing LiEmail author
  • Jianmin Zeng
  • Chuanhui Zhang
  • Tong Liu
  • Zhongwei WangEmail author


The present study investigated the effect of low-valent transition metal ions and oxygen vacancies on the catalytic selective oxidation properties over reduced MoVNbOx catalysts. The MoVNbOx-catalyzed synthesis of ethyl pyruvate (EP) from ethyl lactate (EL) using molecular oxygen (O2) as the hydrogen acceptor under mild aerobic and normal pressure conditions is described. It was found that the nitrogen (N2) calcined catalysts with low-valent metal ions (V4+ and Mo4+) increased the oxidative dehydrogenation (ODH) reaction rate and the EL conversion reached 90.6% (~ 21.1 mmol [EP] mmol [V4+]−1 h−1). The ODH catalytic activity of the N2–MoVNbOx catalyst was four times higher than that of the pristine MoVNbOx catalyst. Low-valent V4+ ions introduced plenty of oxygen vacancies to the surface structure and increased the oxygen mobility, which facilitated the ODH reaction. Together, the results of the temperature programmed reduction of hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and ODH reaction experiments revealed that the presence of low-valent V4+/Mo4+ ions not only lowers the reduction temperature of oxide catalysts, but also facilitates the capture of O2 on the site of oxygen vacancies. The presence of active sites of low-valent V4+ ions and oxygen vacancies was proposed as the reaction mechanism responsible for the high activity. These results have implications for our understanding of the effects of oxidation processes on reduced multi-component oxides.

Graphical Abstract


Oxidative dehydrogenation Ethyl lactate Ethyl pyruvate MoVNbOx 



We gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant Nos. 21676285 and 21306214), Qingdao Applied Basic Research Project - Indigenous Innovation Program (Grant No. 15-9-1-76-jch), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2017RCJJ015), Key Laboratory Opening Fund from Ministry-province Jointly-constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi Zhuang Autonomous Region, and National Undergraduate Innovation and Entrepreneurship Training Program (Grant No. 201710424083).

Supplementary material

10562_2018_2616_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3303 KB)


  1. 1.
    Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) Science 337:96CrossRefGoogle Scholar
  2. 2.
    Tanaka KI, Shimoda M, Kawahara M (2018) Biochem Biophys Res Commun 495:1335CrossRefGoogle Scholar
  3. 3.
    Fink MP (2007) J Intern Med 261:349CrossRefGoogle Scholar
  4. 4.
    Pathak M, Mishra R, Agarwala PK, Ojha H, Singh B, Singh A, Kukreti S (2016) Thermochim Acta 633:140CrossRefGoogle Scholar
  5. 5.
    Worku N, Stich A, Daugschies A, Wenzel I, Kurz R, Thieme R, Kurz S, Birkenmeier G (2015) PLoS ONE 10:e0137353CrossRefGoogle Scholar
  6. 6.
    Güreş N, Karaman M, Tavusbay C, Kolatan E, Çelik A, Pekçetin Ç, Çavdar Z, Küme T, Guneli E, Yılmaz O (2014) Biomed Res 25:203Google Scholar
  7. 7.
    Wagner F, Asfar P, Georgieff M, Radermacher P, Wagner K (2012) Crit Care 16:112CrossRefGoogle Scholar
  8. 8.
    Yang X, Liu Y, Li X, Ren J, Zhou L, Lu T, Su Y (2018) ACS Sustain Chem Eng 6:8256CrossRefGoogle Scholar
  9. 9.
    Yang X, Bian J, Huang J, Xin W, Lu T, Chen C, Su Y, Zhou L, Wang F, Xu J (2017) Green Chem 19:692CrossRefGoogle Scholar
  10. 10.
    Zhou L, Wu L, Li H, Yang X, Su Y, Lu T, Xu J (2014) J Mol Catal A 388–389:74CrossRefGoogle Scholar
  11. 11.
    Zhao X, Zhang C, Xu C, Li H, Huang H, Song L, Li X (2016) Chem Eng J 296:217CrossRefGoogle Scholar
  12. 12.
    Zhang W, Ensing B, Rothenberg G Shiju NR (2018) Green Chem 20:1866CrossRefGoogle Scholar
  13. 13.
    Ramos-Fernandez EV, Geels NJ, Shiju NR, Rothenberg G (2014) Green Chem 16:3358CrossRefGoogle Scholar
  14. 14.
    Liu K, Huang X, Pidko EA, Hensen EJ (2017) Green Chem 19:3014CrossRefGoogle Scholar
  15. 15.
    Zhang C, Wang T, Ding Y (2017) Appl Catal A 533:59CrossRefGoogle Scholar
  16. 16.
    Yasukawa T, Ninomiya W, Ooyachi K, Aoki N, Mae K (2011) Ind Eng Chem Res 50:3858CrossRefGoogle Scholar
  17. 17.
    Ai M (2002) Appl Catal A 234:235CrossRefGoogle Scholar
  18. 18.
    Ai M, Ohdan K (1997) Appl Catal A 150:13CrossRefGoogle Scholar
  19. 19.
    Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:794CrossRefGoogle Scholar
  20. 20.
    Mao S, Li B, Su D (2014) J Mater Chem A 2:5287CrossRefGoogle Scholar
  21. 21.
    Gunay A, Theopold KH (2010) Chem Rev 110:1060CrossRefGoogle Scholar
  22. 22.
    Su B, Cao ZC, Shi ZJ (2015) Acc Chem Res 48:886CrossRefGoogle Scholar
  23. 23.
    Baldovino-Medrano VG, Alcázar C, Colomer MT, Moreno R, Gaigneaux EM (2013) Appl Catal A 468:190CrossRefGoogle Scholar
  24. 24.
    Bagheri S, Julkapli NM (2017) Int J Hydrog Energy 42:2116CrossRefGoogle Scholar
  25. 25.
    Zhang W, Innocenti G, Oulego P, Gitis V, Wu H, Ensing B, Cavani F, Rothenberg G, Shiju NR (2018) ACS Catal 8:2365CrossRefGoogle Scholar
  26. 26.
    Botella P, López Nieto JM, Dejoz A, Vázquez MI, Martínez-Arias A (2003) Catal Today 78:507CrossRefGoogle Scholar
  27. 27.
    Setnička M, Čičmanec P, Bulánek R, Zukal A, Pastva J (2013) Catal Lett 144:50CrossRefGoogle Scholar
  28. 28.
    Wang N-l, Qiu J-e, Wu J, You K-y, Luo H-a (2015) Catal Lett 145:1792CrossRefGoogle Scholar
  29. 29.
    Ishchenko EV, Gulyaev RV, Kardash TY, Ishchenko AV, Gerasimov EY, Sobolev VI, Bondareva VM (2017) Appl Catal A 534:58CrossRefGoogle Scholar
  30. 30.
    Che-Galicia G, Ruiz-Martínez RS, López-Isunza F, Castillo-Araiza CO (2015) Chem Eng J 280:628CrossRefGoogle Scholar
  31. 31.
    Ishchenko EV, Andrushkevich TV, Popova GY, Kardash TY, Ishchenko AV, Dovlitova LS, Chesalov YA (2014) Appl Catal A 476:91CrossRefGoogle Scholar
  32. 32.
    Li X, Iglesia E (2007) Angew Chem Int Ed Engl 46:8649CrossRefGoogle Scholar
  33. 33.
    Nayak SC, Shee D, Deo G (2010) Catal Lett 136:271CrossRefGoogle Scholar
  34. 34.
    López-Medina R, Fierro JLG, Guerrero-Pérez MO, Bañares MA (2011) Appl Catal A 406:34CrossRefGoogle Scholar
  35. 35.
    Cheng M-J, Goddard WA (2015) J Am Chem Soc 137:13224CrossRefGoogle Scholar
  36. 36.
    Ishikawa S, Ueda W (2016) Catal Sci Technol 6:617CrossRefGoogle Scholar
  37. 37.
    Che-Galicia G, Quintana-Solórzano R, Ruiz-Martínez RS, Valente JS, Castillo-Araiza CO (2014) Chem Eng J 252:75CrossRefGoogle Scholar
  38. 38.
    Ishchenko EV, Kardash TY, Gulyaev RV, Ishchenko AV, Sobolev VI, Bondareva VM (2016) Appl Catal A 514:1CrossRefGoogle Scholar
  39. 39.
    Li X, Iglesia E (2007) Angew Chem Int Ed 46:8649CrossRefGoogle Scholar
  40. 40.
    Li X, Iglesia E (2008) J Phys Chem C 112:15001CrossRefGoogle Scholar
  41. 41.
    Doornkamp C, Ponec V (2000) J Mol Catal A 162:19CrossRefGoogle Scholar
  42. 42.
    Miao S, Song L, Li H, Li X, Xing L, Li M (2014) Chin J Inorg Chem 30:1325Google Scholar
  43. 43.
    Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S (2018) Chem Eng J 348:831CrossRefGoogle Scholar
  44. 44.
    Yang W, Zhu Y, You F, Yan L, Ma Y, Lu C, Gao P, Hao Q, Li W (2018) Appl Catal B 233:184CrossRefGoogle Scholar
  45. 45.
    Lu Y, Huang Y, Zhang Y, Cao J-j, Li H, Bian C, Lee SC (2018) Appl Catal B 231:357CrossRefGoogle Scholar
  46. 46.
    Li X, Iglesia E (2008) Appl Catal A 334:339CrossRefGoogle Scholar
  47. 47.
    Thorsteinson EM, Wilson TP, Young FG, Kasai PH (1978) J Catal 52:116CrossRefGoogle Scholar
  48. 48.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  49. 49.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  50. 50.
    Ekström T, Nygren M (1972) Acta Chem Scand 26:1827CrossRefGoogle Scholar
  51. 51.
    Zhu H, Laveille P, Rosenfeld DC, Hedhili MN, Basset J-M (2015) Catal Sci Technol 5:4164CrossRefGoogle Scholar
  52. 52.
    Kardash TY, Plyasova LM, Bondareva VM, Andrushkevich TV, Dovlitova LS, Ischenko AI, Nizovskii AI, Kalinkin AV (2010) Appl Catal A 375:26CrossRefGoogle Scholar
  53. 53.
    Wan C, Cheng D-g, Chen F, Zhan X (2015) RSC Adv 5:42609CrossRefGoogle Scholar
  54. 54.
    Harlin ME, Niemi VM, Krause AOI (2000) J Catal 195:67CrossRefGoogle Scholar
  55. 55.
    Sharma P, Dwivedi R, Dixit R, Batra M, Prasad R (2015) RSC Adv 5:39635CrossRefGoogle Scholar
  56. 56.
    Avdeev VI, Bedilo AF (2015) Res Chem Intermed 42:5237CrossRefGoogle Scholar
  57. 57.
    Maeda Y, Kakiuchi N, Matsumura S, Nishimura T, Kawamura T, Uemura S (2002) J Org Chem 67:6718CrossRefGoogle Scholar
  58. 58.
    Kaichev VV, Popova GY, Chesalov YA, Saraev AA, Andrushkevich TV, Bukhtiyarov VI (2016) Kinet Catal 57:82CrossRefGoogle Scholar
  59. 59.
    Dong F, Xiong T, Sun Y, Huang H, Wu Z (2015) J Mater Chem A 3:18466CrossRefGoogle Scholar
  60. 60.
    Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458:746CrossRefGoogle Scholar
  61. 61.
    Lu T, Zou J, Zhan Y, Yang X, Wen Y, Wang X, Zhou L, Xu J (2018) ACS Catal 8:1287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-Ferrous Metal and Featured MaterialsGuangxi UniversityNanningChina
  4. 4.School of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  5. 5.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations