Skip to main content

Synthesis and Characterization Ru–C/SiO2 Aerogel Catalysts for Sugar Hydrogenation Reactions

Abstract

Synthesis of materials with combined chemistry and textural properties of carbon and silica aerogels was studied. The synthesized support was modified with ruthenium using evaporation impregnation and deposition–precipitation methods. The ruthenium modification methods were observed to influence the particle size, dispersion, surface area, pore volume and acidity of Ru–C–SiO2 catalysts. Ruthenium particles of 1–2 nm were obtained with a simple impregnation–evaporation method, while deposition precipitations technique gave ruthenium particles ranging from 1 to 8 nm. Small Ru nanoparticles (1–2 nm) were stable even after being exposed at 700 °C or washed with ethanol for regeneration. Furthermore, the catalytic properties of Ru–C–SiO2 catalysts in sugar hydrogenation were also observed to be influenced by the synthesis methods. The catalysts were tested in hydrogenation of sugars with different molecule sizes (i.e. glucose and cellobiose). d-Glucose was more reactive than d-cellobiose when they were studied separately. For the mixture of sugars higher reactivity of both sugars was observed in comparison with neat substrates for the catalyst made by evaporation-impregnation. On the contrary no significant differences between kinetics of the separated sugars and their mixture were observed for the catalyst prepared by deposition–precipitation. The results can be attributed to acidity and a combination of meso and microporosity of the catalysts. The support composite material could also be produced as a monolith, being a promising candidate for future industrial applications.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    National Research Council (1992) Catalysis looks to the future. National Academy Press, Washington D.C., p. 1

    Google Scholar 

  2. 2.

    Friend CM, Xu B (2017) Acc Chem Res 50:517–521

    CAS  Article  Google Scholar 

  3. 3.

    Arena BJ (1992) Appl Catal A 87:219–229

    CAS  Article  Google Scholar 

  4. 4.

    Maris EP, Ketchie WC, Oleshko V, Davis RJ (2016) J Phys Chem B 110:7869–7876

    Article  Google Scholar 

  5. 5.

    Ribeiro LS, Delgado JJ, Órfão JJM, Pereira MFR (2017) Appl Catal B 217:265–274

    CAS  Article  Google Scholar 

  6. 6.

    Romero A, Cantero DA, Nieto-Márquez A, Martínez C, Alonso E, Cocero MJ (2016) Green Chem 18:4051

    CAS  Article  Google Scholar 

  7. 7.

    Lazaridis PA, Karakoulia SA, Teodorescu C, Apostol N, Macovei D, Panteli A, Delimitis A, Coman SM, Parvulescu VI, Triantafyllidis KS (2017) Appl Catal B 214:1–14

    CAS  Article  Google Scholar 

  8. 8.

    Lazaridis PA, Karakoulia S, Delimitis A, Coman SM, Parvulescu VI, Triantafyllidis KS (2015) Catal Today 257:281–290

    CAS  Article  Google Scholar 

  9. 9.

    Mardhiah HH, Ong HC, Masjuki HH, Lim S, Pang YL (2017) ‎Energy Convers Manag 144:10–17

    CAS  Article  Google Scholar 

  10. 10.

    Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T (2015) Catal Today 257:169–176

    CAS  Article  Google Scholar 

  11. 11.

    De S, Dutta S (2017) Saha Appl Catal B 214:1–14

    Article  Google Scholar 

  12. 12.

    Navarrete A, Muñoz S, Sanz-Moral LM, Brandner JJ, Pfeifer P, Martín Á, Dittmeyer R, Cocero MJ (2015) Faraday Discuss 183:249

    CAS  Article  Google Scholar 

  13. 13.

    Sanz-Moral LM, Romero A, Holz F, Rueda M, Navarrete A, Martín Á (2016) J Taiwan Inst Chem Eng 65:515–521

    CAS  Article  Google Scholar 

  14. 14.

    Anderson ML, Stroud RM, Rolison DR (2002) Nano Lett 2:235–240

    CAS  Article  Google Scholar 

  15. 15.

    Zhong RY, Liao Y, Peng L, Iacobescu RI, Pontikes Y,. Shu L, Ma, Sels BF (2018) Ri. ACS Sustain Chem Eng 6:7859–7870

    CAS  Article  Google Scholar 

  16. 16.

    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Green Chem 12:1560–1563

    Article  Google Scholar 

  17. 17.

    Kong Y, Zhong Y, Shen X, Cui S, Yang M, Teng K, Zhang J (2012) J Non-Cryst Solids 358:3150–3155

    CAS  Article  Google Scholar 

  18. 18.

    Sanz-Moral LM, Rueda M, Mato R, Martín Á (2014) J Supercrit Fluids 92:24–30

    CAS  Article  Google Scholar 

  19. 19.

    Kuusisto JP, Mikkola J-P, Sparv M, Wärnå J, Heikkilä H, Perälä R, Väyrynen J, Salmi T (2006) Ind Eng Chem Res 45:5900–5910

    CAS  Article  Google Scholar 

  20. 20.

    Sifontes Herrera VA, Oladele O, Kordás K, Eränen K, Mikkola JP, Murzin DY, Salmi T (2011) J Chem Technol Biotechnol 86:658–668

    CAS  Article  Google Scholar 

  21. 21.

    Murzin DY, Simakova OA, Simakova IL, Parmon VN (2011) React Kinet Mech Catal 104:59–266

    Article  Google Scholar 

  22. 22.

    Sanz-Moral [22]LM, Navarrete A, Sturm G, Link G, Rueda M, Stefanidis G, Martín Á (2017) J Power Sources 353:131–137

    CAS  Article  Google Scholar 

  23. 23.

    Bedia J, Rosas JM, Márquez J, Rodríguez-Mirasol J, Cordero T (2009) Carbon 47:286–294

    CAS  Article  Google Scholar 

  24. 24.

    Morazzani V, Cantin JL, Ortega C, Pajot B, Rahbi R, Rosenbauer M, von Bardeleben HJ, Vazsonyi E (1996) E. Thin Solid Films 276:32–35

    CAS  Article  Google Scholar 

  25. 25.

    Sanz-Moral LM, Rueda M, Nieto A, Novak Z, Knez Z, Martín Á (2013) J Supercritical Fluids 84:74–79

    CAS  Article  Google Scholar 

  26. 26.

    Mermer NK, Karakas SB, Yilmaz MS (2015) J Sci 11:401–404

    Google Scholar 

  27. 27.

    Wang Y, Wang D, Tan M, Jiang B, Zheng J, Tsubaki N, Wu M (2015) ACS Appl Mater Interfaces 7:26767–26775

    CAS  Article  Google Scholar 

  28. 28.

    Saib AM, Moodley DJ, Ciobîc IM, Hauman MM, Sigwebela BH, Weststrate CJ, Niemantsverdriet JW, van de Loosdrecht J (2010) Catal Today 154:271–282

    CAS  Article  Google Scholar 

  29. 29.

    Aho A, Roggan S, Simakova OA, Salmi T, Murzin DY (2015) Catal Today 241:195–199

    CAS  Article  Google Scholar 

  30. 30.

    Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) Cellulose 12:563–576

    CAS  Article  Google Scholar 

  31. 31.

    Mishra DK, Dabbawala AA, Park JJ, Jhung SH, Hwang JS (2014) Catal Today 232:99–107

    CAS  Article  Google Scholar 

  32. 32.

    Romero A, Alonso E, Sastre Á, Nieto-Márquez A (2016) Microporous Mesoporous Mater 224:1–8

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research has been financed by the Johan Gadolin Scholarships program from Johan Gadolin Process Chemistry Centre at Åbo Akademi University, by the Spanish Ministry of Economy and Competitiveness through project ENE2014-53459-R and by the Isabel P. Trabal Scholarship from the Fundación Caja de Ingenieros.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu. Murzin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanz-Moral, L.M., Aho, A., Kumar, N. et al. Synthesis and Characterization Ru–C/SiO2 Aerogel Catalysts for Sugar Hydrogenation Reactions. Catal Lett 148, 3514–3523 (2018). https://doi.org/10.1007/s10562-018-2556-4

Download citation

Keywords

  • Sugar Hydrogenation
  • Deposition Precipitation
  • Separated Sugars
  • Silica Aerogel
  • Neat Substrate