Skip to main content
Log in

Gold Nanoparticles-Decorated Dithiocarbamate Nanocomposite: An Efficient Heterogeneous Catalyst for the Green A3-Coupling Synthesis of Propargylamines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gold nanoparticles decorated magnetic dithiocarbamate nanocomposite (Au@CS2–AP@Fe3O4) led to a suitable catalyst for the propargylamines synthesis via A3-coupling reaction in water. The prepared catalyst was characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, atomic absorption spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy measurements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Wan JP, Gan L, Liu Y (2017) Transition metal-catalyzed C–H bond functionalization in multicomponent reactions: a tool toward molecular diversity. Org Biomol Chem 15:9031–9043

    Article  CAS  PubMed  Google Scholar 

  2. Souza D, Müller TJJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108

    Article  PubMed  Google Scholar 

  3. Müller TJJ (2008) Consecutive multi-component syntheses of heterocycles via palladium-copper catalyzed generation of alkynones. Arkivoc 1:195–208

    Google Scholar 

  4. Quesnel JS, Arndtsen BA (2013) Transition-metal-catalyzed multicomponent coupling reactions with imines and carbon monoxide. Pure Appl Chem 85:377–384

    Article  CAS  Google Scholar 

  5. Peshkov VA, Pereshivkoa OP, Van der Eycken EV (2012) A walk around the A3-coupling. Chem Soc Rev 41:3790–3807

    Article  CAS  PubMed  Google Scholar 

  6. Chen JJ, Swope DM, Dashtipour K (2007) Comprehensive review of rasagiline, a second-generation monoamine oxidase inhibitor, for the treatment of Parkinson’s disease. Clin Ther 29:1825–1849

    Article  CAS  PubMed  Google Scholar 

  7. Pålhagen S, Heinonen E, Hägglund J, Kaugesaar T, Mäki-Ikola O, Palm R (2006) Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 66:1200–1206

    Article  PubMed  Google Scholar 

  8. Bolea I, Gella A, Unzeta M (2013) Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J Neural Transm 120:893–902

    Article  CAS  PubMed  Google Scholar 

  9. Bar-Am O, Amit T, Weinreb O, Youdim MBH, Mandel S (2010) Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid protein precursor: involvement of MAPK and PKC activation. J Alzheimer’s Dis 21:361–371

    Article  CAS  Google Scholar 

  10. Olanow CW (2006) Rationale for considering that propargylamines might be neuroprotective in Parkinson’s disease. Neurology 66:S69–S79

    Article  CAS  PubMed  Google Scholar 

  11. Chen H-B, Zhaoa Y, Liao Y (2015) Aldehyde–alkyne–amine (A3) coupling catalyzed by a highly efficient dicopper complex. RSC Adv 5:37737–37741

    Article  CAS  Google Scholar 

  12. Albaladejo MJ, Alonso F, Moglie Y, Yus M (2012) Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania. Eur J Org Chem. https://doi.org/10.1002/ejoc.201200090

    Article  Google Scholar 

  13. Brannock KC, Burpitt RD, Thweatt JG (1963) Enamine chemistry. I. Reactions with nonactivated terminal acetylenic compounds1. J Org Chem 28:1462–1464

    Article  Google Scholar 

  14. Fischer C, Carreira EM (2001) Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir (I) complex. Org Lett 3:4319–4321

    Article  CAS  PubMed  Google Scholar 

  15. Colombo F, Benaglia M, Orlandi S, Usuelli F, Celentano G (2006) Very mild, enantioselective synthesis of propargylamines catalyzed by copper (I)–bisimine complexes. J Org Chem 71:2064–2070

    Article  CAS  PubMed  Google Scholar 

  16. Li C-J (2010) The development of catalytic nucleophilic additions of terminal alkynes in water. Acc Chem Res 43:581–590

    Article  CAS  PubMed  Google Scholar 

  17. Zeng T, Chen WW, Cirtiu CM, Moores A, Song G, Li C-J (2010) Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem 12:570–573

    Article  CAS  Google Scholar 

  18. Wei C, Li Z, Li CJ (2004) The development of A3-coupling (aldehyde-alkyne-amine) and AA3-coupling (asymmetric aldehyde-alkyne-amine). Synlett 2004:1472–1483

    Google Scholar 

  19. Huang B, Yao X, Li C-J (2006) Diastereoselective synthesis of α-oxyamines via gold-, silver- and copper-catalyzed, three-component couplings of α-oxyaldehydes, alkynes, and amines in water. Adv Synth Catal 348:1528–1532

    Article  CAS  Google Scholar 

  20. Lo VK-Y, Liu Y, Wong M-K, Che C-M (2006) Gold (III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org Lett 8:1529–1532

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Corma A (2007) Effective Au (III)–CuCl2-catalyzed addition of alcohols to alkenes. Chem Commun. https://doi.org/10.1039/B706961H

    Article  Google Scholar 

  22. Teles JH, Brode S, Chabanas M (1998) Cationic gold (I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem Int Ed 37(10):1415–1418

    Article  CAS  Google Scholar 

  23. Gholinejad M, Hameda F, Nájera C (2016) Gold nanoparticles supported on polyacrylamide containing a phosphorus ligand as an efficient heterogeneous catalyst for three-component synthesis of propargylamines in water. Synlett 27:1193–1201

    Article  CAS  Google Scholar 

  24. Zhang X, Corma A (2008) Supported gold (III) catalysts for highly efficient three-component coupling reactions. Angew Chem 120:4430–4433

    Article  Google Scholar 

  25. Huang J-L, Gray DG, Li CJ (2013) A3-coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J Org Chem 9:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shabbir S, Lee Y, Rhee H (2015) Au (III) catalyst supported on a thermoresponsive hydrogel and its application to the A-3 coupling reaction in water. J Catal 322:104–108

    Article  CAS  Google Scholar 

  27. Kar-Yan Lo V, Liu Y, Wong MK, Che CM (2006) Gold (III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org Lett 8:1529–1532

    Article  CAS  Google Scholar 

  28. Karimi B, Gholinejad M, Khorasania M (2012) Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem Commun 48:8961–8963

    Article  CAS  Google Scholar 

  29. Feiz A, Bazgir A (2016) Gold nanoparticles supported on mercaptoethanol directly bonded to MCM-41: an efficient catalyst for the synthesis of propargylamines. Catal Commun 73:88–92

    Article  CAS  Google Scholar 

  30. Saif B, Wang C, Chuan D, Shuang S (2015) Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J Biomater Nanobiotechnol 6:267–275

    Article  CAS  Google Scholar 

  31. Karimi B, Esfahani FK (2012) Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols. Adv Synth Catal 354:1319–1326

    Article  CAS  Google Scholar 

  32. Almeida I, Cascalheira AC, Viana AS (2010) One step gold (bio) functionalisation based on CS2-amine reaction. Electrochim Acta 55:8686–8695

    Article  CAS  Google Scholar 

  33. Zhao Y, Pérez-Segarra W, Shi Q, Wei A (2005) Dithiocarbamate assembly on gold. J Am Chem Soc 127:7328–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vickers MS, Cookson J, Beer PD, Bishop PT, Thiebaut B (2006) Dithiocarbamate ligand stabilised gold nanoparticles. J Mater Chem 16:209–215

    Article  CAS  Google Scholar 

  35. Humeres E, de Souza EP, Debacher NA, Aliev AE (2002) Synthesis and coordinating ability of chitosan dithiocarbamate and analogs towards Cu(II) ions. J Phys Org Chem 15:852–857

    Article  CAS  Google Scholar 

  36. Kailasa SK, Wu H-F (2012) One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst 137:1629–1638

    Article  CAS  PubMed  Google Scholar 

  37. Arsalani N, Fattahi H, Nazarpoor M (2010) Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett 4:329–338

    Article  CAS  Google Scholar 

  38. Huang JL, Gray DG, Li CJ (2013) A3-coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J Org Chem 9:1388–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi F, Li Y, Zhang Q, Wang H (2012) Synthesis of Fe3O4/C/TiO2 magnetic photocatalyst via vapor phase hydrolysis. Int J Photoenergy 36:5401–5408

    Google Scholar 

  40. Patsula V, Kosinová L, Lovrić M, Hamzić LF, Rabyk M, Konefal R, Paruzel A, Šlouf M, Herynek V, Gajović S, Horák D (2016) Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 8:7238–7247

    Article  CAS  PubMed  Google Scholar 

  41. Reimers JR, Wang Y, Cankurtaran BO, Ford MJ (2010) Chemical analysis of the superatom model for sulfur-stabilized gold nanoparticles. J Am Chem Soc 132:8378–8384

    Article  CAS  PubMed  Google Scholar 

  42. Morris T, Szulczewski H (2002) Synthesis and characterization of gold sulfide nanoparticles. Langmuir 18:535–539

    Article  CAS  Google Scholar 

  43. Li Q, Das A, Wang S, Chen Y, Jin R (2016) Highly efficient three-component coupling reaction catalysed by atomically precise ligand-protected Au38(SC2H4Ph)24 nanoclusters. Chem Commun 52:14298–14301

    Article  CAS  Google Scholar 

  44. Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catal Sci Technol 4:4001–4009

    Article  CAS  Google Scholar 

  45. Villaverde G, Corma A, Iglesias M, Sánchez F (2012) Heterogenized gold complexes: recoverable catalysts for multicomponent reactions of aldehydes, terminal alkynes, and amines. ACS Catal 2:399–406

    Article  CAS  Google Scholar 

  46. Wei C, Li CJ (2003) A highly efficient three-component coupling of aldehyde, alkyne, and amines via C–H activation catalyzed by gold in water. J Am Chem Soc 125:9584–9585

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Shahid Beheshti University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoob Bazgir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1523 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loni, M., Yazdani, H. & Bazgir, A. Gold Nanoparticles-Decorated Dithiocarbamate Nanocomposite: An Efficient Heterogeneous Catalyst for the Green A3-Coupling Synthesis of Propargylamines. Catal Lett 148, 3467–3476 (2018). https://doi.org/10.1007/s10562-018-2540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2540-z

Keywords

Navigation