Skip to main content
Log in

Highly Catalytic Activity of Ba/γ-Ti–Al2O3 Catalyst for Aldol Condensation of Methyl Acetate with Formaldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, titanium-doped mesoporous Al2O3 (γ-Ti–Al2O3) was prepared by an evaporation-induced self-assembly method and used as a carrier of Ba/γ-Ti–Al2O3 catalyst to catalyze the aldol condensation of methyl acetate with formaldehyde to methyl acrylate in a fixed-bed reactor. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption–desorption, pyridine absorption performed via Fourier transform infrared spectroscope (Py-IR), and NH3 and CO2 temperature-programmed desorption (NH3 and CO2-TPD). Experimental results indicated that the doping of the titanium species into the frame work of mesoporous Al2O3 (γ-Ti–Al2O3) had a significant influence on the catalytic activity via modifying the acid–base surface properties of the catalyst. Furthermore, the Ba/γ-Ti–Al2O3 catalyst demonstrated excellent catalytic performance, with a methyl acetate conversion rate of 50% and methyl acrylate selectivity up to 90.2%. Compared with the Ba/Al2O3 catalyst, the Ba/γ-Ti–Al2O3 catalyst had better catalytic activity, stability and potential for practical application, which was likely due to an increased number of Lewis acid sites, especially the medium acid sites.

Graphical Abstract

Barium supported mesoporous γ-Ti–Al2O3 catalyst was found to be an effective catalyst for vapor phase aldol condensation of methyl acetate with formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Danner H, Dürms M, Gartner M, Braun R (1998) Appl Biochem Biotechnol 70:887

    Article  Google Scholar 

  2. Xu X, Lin J, Cen P (2006) Chin J Chem Eng 14:419–427

    Article  CAS  Google Scholar 

  3. Nagai K (2001) Appl Catal A 221:367–377

    Article  CAS  Google Scholar 

  4. Vlcˇek P, Lochmann L (1999) Prog Polym Sci 24:793–873

    Article  Google Scholar 

  5. Lin MM (2001) Appl Catal A 207:1–16

    Article  CAS  Google Scholar 

  6. Balcells E, Borgmeier F, Grißtede I, Lintz HG, Rosowski F (2004) Appl Catal A 266:211–221

    Article  CAS  Google Scholar 

  7. Ishikawa S, Yi X, Murayama T, Ueda W (2014) Catal Today 238:35–40

    Article  CAS  Google Scholar 

  8. Hävecker M, Wrabetz S, Kröhnert J, Csepei L, d’Alnoncourt R, Kolen’ko Y, Girgsdies F, Schlögl R, Trunschke A (2012) J Catal 285:48–60

    Article  Google Scholar 

  9. d’Alnoncourt R, Csepei L, Hävecker M, Girgsdies F, Schustera M, Schlögl R, Trunschke A (2014) J Catal 311:369–385

    Article  Google Scholar 

  10. Zhai Z, Getsoian A, Bell A (2013) J Catal 308:25–36

    Article  CAS  Google Scholar 

  11. Cheung P, Bhan A, Sunley GJ, Law DJ, Iglesia E (2007) J Catal 245:110–123

    Article  CAS  Google Scholar 

  12. Liu J, Xue H, Huang X, Wu P, Huang S, Liu S, Shen W (2010) Chin J Catal 31:729–738

    Article  Google Scholar 

  13. Trost BM, Brindle CS (2010) Chem Soc Rev 39:1600–1632

    Article  CAS  Google Scholar 

  14. Palomo C, Oiarbide M, García JM (2004) Chem Soc Rev 33:65–75

    Article  CAS  Google Scholar 

  15. Bui TV, Sooknoi T, Resasco DE (2017) ChemSusChem 10:1631 – 1639

    Article  CAS  Google Scholar 

  16. Fäseke VC, Sparr C (2016) Angew Chem Int Ed 55:7261 – 7264

    Article  Google Scholar 

  17. Ai M (1987) J Catal 107:201–208

    Article  CAS  Google Scholar 

  18. Ai M (1988) J Catal 112:194–200

    Article  CAS  Google Scholar 

  19. Ai M (1989) Appl Catal 48:51–61

    Article  CAS  Google Scholar 

  20. Ai M (1989) Appl Catal 54:29–36

    Article  CAS  Google Scholar 

  21. Ai M (1990) Appl Catal 59:227–235

    Article  CAS  Google Scholar 

  22. Feng X, Sun B, Yao Y, Su Q, Ji W, Au CT (2014) J Catal 314:132

    Article  CAS  Google Scholar 

  23. Yang D, Li D, Yao H, Zhang G, Jiao T, Li Z, Li C, Zhang S (2015) Ind Eng Chem Res 54:6865–6873

    Article  CAS  Google Scholar 

  24. Yan J, Zhang C, Ning C, Tang Y, Zhang Y, Chen L, Gao S, Wang Z, Zhang W (2015) J Ind Eng Chem 25:344

    Article  CAS  Google Scholar 

  25. Wang Y, Lang X, Zhao G, Chen H, Fan Y, Yu L, Ma X, Zhu Z (2015) RSC Adv 5:32826

    Article  CAS  Google Scholar 

  26. Roy S, Mpourmpakis G, Hong DY, Vlachos DG, Bhan A, Gorte RJ (2012) ACS Catal 2:1846–1853

    Article  CAS  Google Scholar 

  27. Trueba M, Trasatti SP (2005) Eur J Inorg Chem 2005:3393–3403

    Article  Google Scholar 

  28. Bao Q, Bu T, Yan J, Zhang C, Ning C, Zhang Y, Hao M, Zhang W, Wang Z (2017) Catal Lett 147:1540–1550

    Article  Google Scholar 

  29. Bao Q, Zhu W, Yan J, Zhang C, Ning C, Zhang Y, Hao M, Wang Z (2017) RSC Adv 7:52304

    Article  CAS  Google Scholar 

  30. Jiang F, Zeng L, Li S, Liu G, Wang S, Gong J (2015) ACS Catal 5:438–447

    Article  CAS  Google Scholar 

  31. Xu B, Xiao T, Yan Z, Sun X, Sloan J, González-Cortés SL, Alshahrani F, Green MLH (2006) Microporous Mesoporous Mater 91:293–295

    Article  CAS  Google Scholar 

  32. Bing J, Hu C, Zhang L (2017) Appl Catal B 202:118–126

    Article  CAS  Google Scholar 

  33. Bang Y, Park S, Han SJ, Yoo J, Song JH, Choi JH, Kang KH, Song IK (2016) Appl Catal B 180:179–188

    Article  CAS  Google Scholar 

  34. Parlett CMA, Durndell LJ, Machado A, Cibin G, Bruce DW, Hondow NS, Wilson K, Lee AF (2014) Catal Today 229:46–55

    Article  CAS  Google Scholar 

  35. Kim LH, Kim K, Park S, Jeong YJ, Kim H, Chung DS, Kim SH, Park CE (2014) ACS Appl Mater Interface 6:6731–6738

    Article  CAS  Google Scholar 

  36. Zhao D, Chen C, Wang Y, Ma W, Zhao J, Rajh T, Zang L (2008) Environ Sci Technol 42:308–314

    Article  CAS  Google Scholar 

  37. Gun’ko V, Zarko V, Turov V, Leboda R, Chibowski E, Pakhlov E, Goncharuk E, Marciniak M, Voronin E, Chuiko A (1999) J Colloid Interface Sci 220:302–323

    Article  Google Scholar 

  38. Karthikeyan S, Dionysiou DD, Lee AF, Suvitha S, Maharaja P, Wilson K, Sekaran G (2016) Catal Sci Technol 6:530–544

    Article  CAS  Google Scholar 

  39. Zhao W, Tang Y, Wan Y, Li L, Yao S, Li X, Gu J, Li Y, Shi J (2014) J Hazard Mater 278:350–359

    Article  CAS  Google Scholar 

  40. Haneda M, Kintaichi Y, Hamada H (2001) Appl Catal B 31:251

    Article  CAS  Google Scholar 

  41. Zhang G, Zhang H, Yang D, Li C, Peng Z, Zhang S (2016) Catal Sci Technol 6:6417

    Article  CAS  Google Scholar 

  42. Ma Z, Ma X, Liu H, He Y, Zhu W, Guo X, Liu Z (2017) Chem Commun 53:9071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the technology institute of Shanghai Huayi (Group) Company and Jilin Province Science and Technology research plan (key scientific research project). (No. 20150204020GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlu Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 381 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Q., Qi, H., Zhang, C. et al. Highly Catalytic Activity of Ba/γ-Ti–Al2O3 Catalyst for Aldol Condensation of Methyl Acetate with Formaldehyde. Catal Lett 148, 3402–3412 (2018). https://doi.org/10.1007/s10562-018-2535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2535-9

Keywords

Navigation